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Mauricio Ayala-Rincón Universidade de Braśılia
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Emil Jer̆ábek Czech Academy of Sciences
Temur Kutsia Johannes Kepler University Linz
Jordi Levy IIIA-CSIC
Christopher Lynch Clarkson University
Catherine Meadows University of Hawaii at Manoa
Paliath Narendran University at Albany
Christophe Ringeissen INRIA
Manfred Schmidt-Schauss Inst. für Informatik, Goethe-University Frankfurt am Main

Additional Reviewers

Cornell, Kimberly
Dougherty, Daniel
Hono, Daniel
Kutz, Yunus
Morawska, Barbara

ii



UNIF 2018 Preface

Table of Contents

Handling Substitutions via Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inv. Talk

Silvio Ghilardi

Compressed Term Unification: Results, Applications, Open Problems, and Hopes . . . . . . . . . Inv. Talk
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Handling Substitutions via Duality

Silvio Ghilardi

Università degli Studi di Milano Milano,
silvio.ghilardi@unimi.it

Abstract

Many interesting problems concerning intuitionistic and intermediate propositional log-
ics (as well as other nonclassical and modal propositional logics) are related to properties of
substitutions: among them, besides unification, we have rule admissibility, characterization
of projective formulae, definability of maximum and minimum fixpoints, finite periodicity
theorems, etc. Since most of these questions can be stated in category-theoretic terms,
they are sensible to an approach via duality techniques. The available duality for finitely
presented Heyting algebras involves both sheaves (giving the appropriate geometric frame-
work) and bounded bisimulations (handling the combinatorics of definability aspects): we
show how to use such duality to attack and solve the above problems in a uniform way.
[Recent and new results come from joint work [18] with Luigi Santocanale]

Duality techniques have a long tradition in algebraic logic: given the well-known correspon-
dence between logical calculi and suitable algebraic varieties, it is possible to transfer logical
problems into the algebraic context and, inside such a context, such problems can be further
reformulated in geometric/topological terms by relying on duality theorems. Among such duali-
ties, we recall Stone spaces duality for Boolean algebras, Priestley spaces duality for distributive
lattices, Esakia spaces duality for Heyting algebras, modal spaces duality for modal algebras,
etc. (see textbooks like [8, 21, 6, 28] for relevant information).

Duality approaches are particularly suitable for questions involving substitutions, because
substitutions can bee seen as algebraic homomorphisms. Unification theory is a typical example
in this sense: unification type is a categorical invariant [1, 12] and as such it can be transposed
to dual contexts, as fruitfully exemplified for instance in [12, 15, 7] for some first cases of
locally finite varieties. Unification theory may become a powerful tool in order to analyze rule
admissibility [2, 13, 14, 9]. There are many other questions involving substitutions that are
sensible to duality techniques: we quote for instance the problem of the finite convergence to a
fixpoint for monotone formulae, see [23] for a survey. Other classical topics, like interpolation
and uniform interpolation [24], apparently do not seem to directly refer to substitutions, but
they still involve a categorical structure whose meaning clearly appears after dualization [19,
27, 26, 20].

It should be noticed however that the above problems require specific dualities for the re-
stricted subcategory of finitely presented (or of finitely generated free) algebras, rather than a
duality for the category of all algebras: in logical terms, whereas arbitrary algebras correspond
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- via the Lindenbaum-Tarski construction - to theories inside a given logic, finitely presented
algebras correspond to finitely axiomatized theories in such a logic. Duality theorems for such
restricted subcategories can be obtained basically via two techniques, namely finite step-frames
constructions [10, 11, 3, 5, 4] and bounded bisimulations [19, 29]. We shall refer to the du-
ality theorem from [19], whose main feature is that of embedding dual categories of finitely
presented algebras inside a sheaf topos: in this setting, the geometric environment shows how
to find relevant mathematical structures (products, equalizers, images,...) using their standard
definitions in sheaves and presheaves; on the other hand, the combinatorial aspects show that
such constructions are definable, thus meaningful from the logical side. In this sense our ingre-
dients of combinatorial nature (Ehrenfeucht-Fräıssé games and bounded bisimulations) replace
the topological ingredients which are common in the algebraic logic literature (working with
arbitrary algebras instead of finitely presented ones).

The plan of the talk is the following:

• we show how to exploit finite dualities in order to determine the unification type in locally
finite varieties [15];

• we recall some dualities working in non locally finite cases [19];

• we revisit unification results from [13, 14, 17] in these duality contexts;

• as a new recent application, we give a semantic proof [18] of Ruitenburg’s Theorem [25].

We recall here the statement of the latter. Let us call an infinite sequence

a1, a2, . . . , ai, . . .

ultimately periodic iff there are N and k such that for all s1, s2 ≥ N , we have that s1 ≡ s2
mod k implies as1 = as2 . If (N, k) is the smallest (in the lexicographic sense) pair for which
this happens, we say that N is an index and k a period for the ultimately periodic sequence
{ ai }i. Thus, for instance, an ultimately periodic sequence with index N and period 2 looks as
follows

a1, . . . , aN , aN+1, aN , aN+1, . . .

A typical example of an ultimately periodic sequence is the sequence of the iterations { f i }i of
an endo-function f of a finite set. Whenever infinitary data are involved, ultimate periodicity
comes often as a surprise.

Ruitenburg’s Theorem is in fact a surprising result stating the following: take a formula
A(x, y) of intuitionistic propositional calculus (IPC) (by the notation A(x, y) we mean that
the only propositional letters occurring in A are among x, y - with y being, say, the tuple

y1, . . . , yn) and consider the sequence {Ai(x, y) }i≥1 so defined:

A1 :≡ A, . . . , Ai+1 :≡ A(Ai/x, y) (1)

where the slash means substitution; then, taking equivalence classes under provable bi-
implication in (IPC), the sequence { [Ai(x, y)] }i≥1 is ultimately periodic with period 2. The
latter means that there is N such that

`IPC AN+2 ↔ AN . (2)

An interesting consequence of this result is that least (and greatest) fixpoints of monotonic
formulae are definable in (IPC) [22, 23, 16]: this is because the sequence (1) becomes increasing

2
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when evaluated on ⊥/x (if A is monotonic in x), so that the period is decreased to 1. Thus the
index of the sequence becomes a finite upper bound for the fixpoints approximation convergence.

Ruitenburg’s Theorem was shown in [25] via a, rather involved, purely syntactic proof.
The proof has been recently formalized inside the proof assistant coq by T. Litak (see
https://git8.cs.fau.de/redmine/projects/ruitenburg1984). Here we supply a purely se-
mantic proof, using duality and bounded bisimulation machinery (details are available in the
preprint [18]).
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of Lecture Notes Logic, pages 139–164. Springer, Berlin, 1996.

4



32nd International Workshop on Unification (UNIF 2018), Informal Proceedings

Oxford, 7th July, 2018

Compressed Term Unification: Results, applications, open

problems, and hopes.

Adrià Gascón1

Warwick University and The Alan Turing Institute, UK
agascon@turing.ac.uk

Abstract

Already in the classic first-order unification problem, the choice of a suitable formalism
for term representation has a significant impact in computational efficiency. One can
find other instances of this situation in some variants of second-order unification, where
representing partial solutions efficiently leads to better algorithms. In this talk I will
present some compression schemes for terms and discuss computational complexity results
for variants of first and second-order unification on compressed terms. I’ll show how these
results build up on each other and discuss open problems in compressed term unification,
as well as potential approaches to solutions.

1 Introduction

The problem of checking satisfiability of a set of equations plays a central role in any mathe-
matical science. From the perspective of computer science, a lot of effort is devoted to finding
efficient decision procedures for different families of equations. The problem of satisfiability
of word equations, also known as Word Unification (WU), figures prominently as one of the
most intriguing problems of that form. The first algorithm for that problem was given by
Makanin [26], and the best known upper bound (PSPACE) is due to Plandowski [31]. On the
other hand, its PSPACE-hardness is an open question. Several particular cases of that problem,
such as the ones that result from fixing the number of variables in the equations to a constant,
have also been studied. For instance, efficient algorithms for satisfiability of word equations
with one [6, 29, 18] and two [5] variables have been discovered.

Another fundamental operation in symbolic computation systems is the well-known first-
order unification problem. This problem consists of solving equations of the form s

.
= t, where

s and t are terms with first-order variables. The goal is to find a mapping from variables to
(first-order) terms that would make the terms s and t syntactically equal. This problem was
firstly introduced as such in the work by J.A. Robinson, which established the foundations
of automated theorem proving and logic programming. More concretely, Robinson presented
in [33] a procedure to determine the validity of a first-order sentence that has term unification
as its main ingredient. Later, term unification was also used by Knuth and Bendix as a key
component of their critical pairs method to determine local confluence of term rewrite systems
(see [1] for a general survey on unification theory). The syntactic unification and matching
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problems were deeply investigated in the last century. Among other results, linear time algo-
rithms were discovered [27, 30]. Moreover, more expressive variants of term unification such
as unification modulo theories have also drawn a lot of attention. In this notion of term uni-
fication, equality between terms is interpreted under equational theories such as associativity,
commutativity, and distributivity, among others [1].

An interesting connection between word and term unification is the Context Unification
(CU) problem. In CU, the terms s, t in the equation s

.
= t may contain context variables. For

example, consider the equation F (f(x, b))
.
= f(a, F (y)). where x, y are first-order variables

ranging over terms and F is a context variable that can be replaced by any context. One of
the possible solutions of this instance is the substitution {F 7→ f(a, •), x 7→ a, y 7→ b}. Note
that when we instantiate F by f(a, •) in the equation, replacing the occurrence of • by the
argument of F in each of its occurrences, we get f(a, f(x, b))

.
= f(a, f(a, y)), and thus both

sides of the equations become equal after applying {x 7→ a, y 7→ b}. Note that, simply using a
unary signature, WU reduces to CU. On the other hand, CU is a particular case of second-order
unification, which is undecidable [15]. The decidability of CU remained open for a long time,
until recently a PSPACE algorithm was presented by Jeż [19].

The example above is in fact an instance of the so-called one context unification problem,
denoted 1-CU. In 1-CU, only one context variable, possibly with many occurrences, may appear
in the input terms. One of the motivations for the study of this problem is its close relation-
ship to interprocedural program analysis [17], whose goal is to compute all simple invariants of
imperative procedural programs. Although it is known that 1-CU can be solved in non deter-
ministic polynomial time [10], whether the problem is NP-hard or a polynomial time algorithm
exists is an open problem.

Another particular case of context unification is context matching. The input of context
matching is an equation s

.
= t such that s may contain context variables and first-order variables,

and t does not contain variables of any kind. Although it is known to be NP-complete, there
are several subcases of context matching that can be solved efficiently [9, 36].

Interesting applications of one context unification and matching arise in the search/extrac-
tion of information from tree data structures. For example, a simple matching equation of
the form F (s)

.
= t, where F is the context variable, t is ground, and s may contain first-

order variables but it does not contain occurrences of F , corresponds to searching instances
of s within t. Context matching also captures, for example, a conjunctive search of the form
F1(s1)

.
= t ∧ · · · ∧ Fn(sn)

.
= t, where the Fis are pairwise different and do not occur elsewhere.

These equations correspond to searching for a subterm ui of t that can be matched by si, for
every i ∈ {1, . . . , n}; with the additional constraint that variables within the sis must have
a common instance in t, see [16] for the analysis of conjunctive query mechanisms over trees.
More generally, multiple occurrences of the same context variable in the term s of a context
equation s

.
= t, correspond to searching for instances of subterms of t that differ at, at most,

one position. This has applications in computational linguistics [28]. It is also easy to encode
questions that ask for subtrees that are equal up to several positions.

Term representation

To give a complete description of the problems stated above, one has to precisely state how
is the input represented. Besides an explicit tree representation for terms, in this talk we will
consider two more succinct representations: Directed Acyclic Graphs (DAGs) and Singleton
Tree Grammars (STGs), also known as tree straight-line program. Similarly as DAGs allow
compression by exploiting the reuse of repeated instances of a subterm in a term, STGs are

2
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Problem Term Representation Formalism

Explicit DAG STG

Context Unification PSPACE [19] ? ?
Context Matching NP-Complete NP-Complete NP-Complete

One-context Unification NP [10] NP [4] NP [4]
Left-linear One-context Unification

Ptime Ptime [14] ?
(and similar variants)

2-restricted context Unification Ptime Ptime [13] ?
k-context Matching Ptime Ptime Ptime [7]

First-order Unification Ptime Ptime Ptime [9, 8]
First-order Matching Ptime Ptime Ptime [7]

Equality of unordered ranked trees Ptime Ptime Ptime [24]
Equality of unordered unranked trees Ptime Ptime Ptime [11]

Figure 1: Some recent and classical results in first-order and context unification, for different
variants and formalisms for term representation.

a grammar-based compression mechanism based on the reuse of repeated (multi)contexts. An
interesting property of the STG formalism is that many operations on terms can be efficiently
performed directly in their compressed representation (see [21] for a survey). Some examples
are linear subpattern matching [34], i.e. finding instances of a linear terms s within a ground
term t, first-order and unification and matching and 1-CU [9, 12, 4], equivalence checking [3],
congruence closure [35], and membership in several classes of languages represented by tree
automata [22, 25]. Moreover, STG compressors have already been developed and proven useful
in practice for XML representation and processing [3, 23], and termination analysis of Term
Rewrite Systems [2]. More generally, STGs are a very useful concept for the analysis of uni-
fication problems since, roughly speaking, allow to represent solutions in a succinct but still
efficiently verifiable form. This observation is related to Jeż’s recompression technique, which led
to many results including the positive answer to decidability of Context Unification mentioned
above. In fact, the relationship between compression and solvability of work equations goes back
to the work of Plandowski and Rytter [32] and Plandowski’s work on word unification [31].

2 Selected Results & Open Problems

Figure 1 collects some classical results in unification. We consider three variants for each
problem, depending of whether the input equations are represented explicitly as trees, DAGs,
or STGs. The main major open problem in this space has to do with the exact complexity of
the context unification problem. While the problem is known to be in PSPACE, as mentioned
above, it is only known to be NP-hard. As in fact this is not even known for the simpler case
of word unification, that problem is the natural starting point.

Open Problem 1. Is there a non-deterministic polynomial time decision procedure for WU?

For the particular case of 1-CU, the main open question is whether there is a polynomial
time decision procedure for this problem, as it is only known to be in NP. The problem, for the
case where the input is given a DAG, was conjectured to be in P in [14], where many particular

3
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cases were shown to be solvable in polynomial time. In fact, given the results from [14], it
suffices to find a polynomial time algorithm to the following reduced form.

Definition 2.1. An 1-CU instance I is called reduced if it is of the form

{F (ui)
.
= xi | i = 1, 2, . . .} ∪ {F (vj)

.
= s | j = 1, 2, . . .}

∪ {F (wk)
.
= t | k = 1, 2, . . .} (1)

where s, t do not contain F ; that is, the right hand-side of the equations have at most two
non-variable terms.

Open Problem 2. Is there a polynomial time decision procedure for reduced 1-CU?

A particular case of 1-CU that is instrumental in solving the particular cases of [14] is the
so-called 2-restricted 1-CU. In this particular case, the context variable occurs at most twice in
the input. While we have a polynomial time algorithm for this problem [13] even in the case
where the input is given as a DAG, it is not known whether the results in [14] and [13] extend
to the case where the input is a STG. In fact, before tackling that more general problem, one
should consider a simpler case that was left open in [34]: whether STG-compressed submatching
(of nonlinear terms s in t) can be solved in polynomial time or not. This in fact corresponds to
solving the 1-CU equation F (s) = t, for terms s and t containing arbitrary first-order variables,
but not the context variable F .

Open Problem 3. Is there a polynomial time algorithm STG-compressed term submatching?

Note that this problem is related with finding a redex of a term rewriting rule in a term.
Another open problem with a similar flavour is the one of deciding whether, for STG-compressed
terms s and t, and an order < on terms, s < t holds. This problem can be parameterized by
the class of the ordering <, e.g. lexicographic path orderings or knuth-Bendix orderings. This
brings us to our next open problem.

Open Problem 4. Let s and t be STG-compressed terms, and let < be a KBO ordering on
terms, and thus parameterized by a weight function and a precedence order on the signature of
s and t. Is there a polynomial time decision procedure for s < t?

All the results regarding STGs from Figure 1, as well as the general unification results that
rely on STGs for a succinct representation of sets of solutions of potentially exponential size, crit-
ically rely on a polynomial time algorithm for equivalence checking of STG-compressed terms.
This classical result by Plandowski, has been recently extended to unordered and unranked
trees [11]. A potential extension of such works could consider grammar-based tree compression
mechanisms more general than STGs. In particular, STGs do not allow repeated occurrences of
parameters and hence, roughly speaking, do not allow copying. If we drop that restriction, we
obtain nonlinear STGs, a formalism equivalent to Lamping’s sharing graphs [20] that allows for
a doubly exponential compression ratio [3]. However, the existence of an efficient equivalence
checking procedure for nonlinear STGs is open, since the best known complexity upper bound
for this problem in PSPACE [3]. I believe that this bound can be improved to co-NP, but the
existence of a polynomial time algorithm does not seem plausible since, in the worst-case, O(2n)
bits are needed to simply store the size of a term represented with a non-linear STG of size n.
In any case, no hardness result is known.

Open Problem 5. Is there a non-deterministic polynomial time decision procedure for equiv-
alence checking of nonlinear STGs?

4
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3 Conclusion

In this talk I will review some of the results from Figure 1 and related techniques, and discuss
potential approaches to solve the above open questions.
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Abstract

We consider the problem of unification modulo an equational theory ACh, which con-
sists of a function h which is homomorphic over an associative-commutative operator +.
Unification modulo ACh is undecidable, so we define a bounded ACh unification problem.
In this bounded version of ACh unification we essentially bound the number of times h can
be recursively applied to a term, and only allow solutions that satisfy this bound. There is
no bound on the number of occurrences of h in a term, and the + symbol can be applied an
unlimited number of times. We give inference rules for solving bounded ACh unification,
and we prove that the rules are sound, complete and terminating. We have implemented
the algorithm in Maude and give experimental results. We argue that this algorithm is
useful in cryptographic protocol analysis.

1 Introduction

Unification is a method to find a solution for a set of equations. For instance, consider an

equation x + y
?
= a + b, where x and y are variables, and a, and b are constants. If + is

an uninterpreted function symbol then the equation has one solution {x 7→ a, y 7→ b}, and
this unification is called syntactic unification. If the function symbol + has the property of
commutativity then the equation has two solutions: {x 7→ a, y 7→ b} and {x 7→ b, y 7→ a}; and
this is called unification modulo the commutativity theory.

Unification modulo equational theories plays a significant role in symbolic cryptographic
protocol analysis [7]. An overview and references for some of the algorithms may be seen
in [8, 6]. One such equational theory is the distributive axioms: x × (y + z) = (x × y) +
(x × z); (y + z) × x = (y × x) + (z × x). A decision algorithm is presented for unification
modulo two-sided distributivity in [12]. A sub-problem of this, unification modulo one-sided
distributivity, is in greater interest since many cryptographic protocol algorithms satisfy the
one-sided distributivity. In their paper [13], Tiden and Arnborg presented an algorithm for
unification modulo one-sided distributivity: x× (y+ z) = (x×y) + (x× z), and also it has been
shown that it is undecidable if we add the properties of associativity x+(y+z) = (x+y)+z and
a one-sided unit element x× 1 = x. However, some counterexamples [11] have been presented
showing that the complexity of the algorithm is exponential, although they thought it was
polynomial-time bounded.

For practical purposes, one-sided distributivity can be viewed as the homomorphism theory,
h(x + y) = h(x) + h(y), where the unary operator h distributes over the binary operator +.
Homomorphisms are highly used in cryptographic protocol analysis. In fact, homomorphism is
a common property that many election voting protocols satisfy [9].

Our goal is to present a novel construction of an algorithm to solve unification modulo the
homomorphism theory over a binary symbol + that also has the properties of associativity

∗Ajay K. Eeralla was partially supported by NSF CNS-1314338
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and commutativity (ACh), which is an undecidable unification problem [10]. Given that ACh
unification is undecidable but necessary to analyze cryptographic protocols, we developed an
approximation of ACh unification, which we show to be decidable.

In this paper, we present an algorithm to solve a modified general unification problem
modulo the ACh theory, which we call bounded ACh unification. We define the h-height of a
term to be basically the number of h symbols recursively applied to each other. We then only
search for ACh unifiers of a bounded h-height. The number of occurrences of the + symbol
is not bounded. In order to accomplish this we define the h-depth of a variable, which is the
number of h symbols on top of a variable. We develop a set of inference rules for ACh unification
that keep track of the h-depth of variables. If the h-depth of any variable exceeds the bound κ
then the algorithm terminates with no solution. Otherwise, it gives all the unifiers or solutions
to the problem.

2 Preliminaries

We assume the reader is familiar with basic notation of unification theory and term rewriting
systems (see for example [3, 4]).

Definition 1 (More General Substitution). A substitution σ is more general than substitution
θ if there exists a substitution η such that θ = ση, denoted as σ . θ. Note that the relation .
is a quasi-ordering, i.e., reflexive and transitive.

Definition 2 (Unifier, Most General Unifier). A substitution σ is a unifier or solution of two
terms s and t if sσ = tσ; it is a most general unifier if for every unifier θ of s and t, σ . θ.
Moreover, a substitution σ is a solution of set of equations if it is a solution of each of the
equations. If a substitution σ is a solution of a set of equations Γ, then it is denoted by σ |= Γ.

A set of identities E is a subset of T (F ,V)×T (F ,V) and are represented in the form s ≈ t.
An equational theory =E is induced by a set of fixed identities E and it is the least congruence
relation that is closed under substitution and contains E.

Definition 3 (E -Unification Problem, E -Unifier, E -Unifiable). Let F be a signature and E
be an equational theory. An E -unification problem over F is a finite set of equations Γ =

{s1
?
=E t1, . . . , sn

?
=E tn} between terms. An E -unifier or E-solution of two terms s and t is a

substitution σ such that sσ =E tσ. An E -unifier of Γ is a substitution σ such that siσ =E tiσ
for i = 1, . . . , n. The set of all E -unifiers is denoted by UE(Γ) and Γ is called E -unifiable if
UE(Γ) 6= ∅. If E = ∅ then Γ is a syntactic unification problem.

Let Γ = {s1
?
=E t1, . . . , sn

?
=E tn} be a set of equations, and let θ be a substitution. We say

that θ satisfies Γ modulo equational theory E if θ is an E -solution of each equation in Γ, that
is, siθ =E tiθ for i = 1, . . . , n. We write it as θ |=E Γ. Let σ = {x1 7→ t1, . . . , xn 7→ tn} and θ
be substitutions, and let E be an equational theory. We say that θ satisfies σ in the equational
theory E if xiθ =E tiθ for i = 1, . . . , n. We write it as θ |=E σ.

Definition 4 (Complete Set of E -Unifiers). A complete set of E -unifiers of an E -unification
problem Γ is a set S of idempotent E -unifiers of Γ such that for each θ ∈ UE(Γ) in Γ there
exists σ ∈ S with σ .E θ|V ar(Γ), where V ar(Γ) is the set of variables in Γ.

A complete set S of E -unifiers is minimal if for two distinct unifiers σ and θ in S, one is
not more general than the other; i.e., if σ .E θ|V ar(Γ) and σ, θ ∈ S then σ = θ. A minimal
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complete set of unifiers for a syntactic unification problem Γ has only one element if it is not
empty. It is denoted by mgu(Γ) and can be called most general unifier of unification problem
Γ.

2.1 ACh Theory

The equational theory we consider is the theory of a homomorphism over a binary function
symbol +. The symbol + has the properties associativity and commutativity. We abbreviate
this theory as ACh. The signature F includes a unary symbol h, and a binary symbol +, and
other uninterpreted function symbols with fixed-arity. The function symbols h and + in the
signature F satisfy the identities: x+ (y+ z) ≈ (x+ y) + z (Associativity, A for short); x+ y ≈
y + x (Commutativity, C for short); h(x+ y) ≈ h(x) + h(y) (Homomorphism, h for short).

2.2 h-Depth Set

For convenience, we assume that our unification problem is in flattened form, i.e., that every

equation in the problem is in one of the following forms: x
?
= y, x

?
= h(y), x

?
= y1 + · · ·+yn, and

x
?
= f(x1, . . . , xn), where x, y, yi, and xi are variables, and f is a free symbol with n ≥ 0. The

first kind of equations are called VarVar equations. The second kind are called h-equations.
The third kind are called +-equations. The fourth kind are called free equations.

Definition 5 (Graph G(Γ)). Let Γ be a unification problem. We define a graph G(Γ) as a
graph where each node represents a variable in Γ and each edge represents a function symbol in

Γ. To be exact, if an equation w
?
= f(x1, . . . , xn), where f is a symbol with n ≥ 1, is in Γ then

the graph G(Γ) contains n edges w
f→ x1, . . . , w

f→ xn. For a constant symbol c, if an equation

w
?
= c is in Γ then the graph G(Γ) contains a vertex w. Finally, the graph G(Γ) contains two

vertices if an equation w
?
= y is in Γ.

Definition 6 (h-Depth). Let Γ be a unification problem and let x be a variable that occurs
in Γ. Let h be a unary symbol and let f be a symbol (distinct from h) with arity greater
than or equal to 1 and occur in Γ. We define h-depth of a variable x as the maximum number
of h-symbols along a path to x in G(Γ), and it is denoted by hd(x,Γ). That is, hd(x,Γ) :=

max{hdh(x,Γ), hdf (x,Γ), 0}, where hdh(x,Γ) := max{1 + hd(y,Γ) | y h→ x is an edge in G(Γ)}
and hdf (x,Γ) := max{hd(y,Γ) | there exists f 6= h such that y

f→ x is in G(Γ)}.

Definition 7 (h-Height). We define h-height of a term t as the following:

hh(t) :=

 hh(t′) + 1 if t = h(t′)
max{hh(t1), . . . , hh(tn)} if t = f(t1, . . . , tn), f 6= h

0 if t = x or c

where f is a function symbol with arity greater than or equal to 1.

Without loss of generality, we assume that h-depth and h-height is not defined for a variable
that occurs on both sides of the equation. This is because the occur check rule—concludes the
problem with no solution—presented in the next section has higher priority over the h-depth
updating rules.

Definition 8 (h-Depth Set). Let Γ be a set of equations. The set h-depth of Γ, denoted hds(Γ),
is defined as hds(Γ) := {(x, hd(x,Γ)) | x is a variable appearing in Γ}. In other words, the
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elements in the h-depth set are of the form (x, c), where x is a variable that occur in Γ and c is a
natural number representing the h-depth of x. Maximum value of h-depth set4 is the maximum
of all c values and it is denoted by MaxV al(4), i.e., MaxV al(4) := max{c | (x, c) ∈ 4}.

Definition 9 (Bounded E -Unification Problem, Bounded E -Unifier). A κ bounded E -unification

problem over F is a finite set of equations Γ = {s1
?
=E t1, . . . , sn

?
=E tn}, si, ti ∈ T (F ,V), where

E is an equational theory, and κ is a positive integer. A κ bounded E -unifier or κ bounded
E -solution of Γ is a substitution σ such that siσ =E tiσ, hh(siσ) ≤ κ, and hh(tiσ) ≤ κ for all i.

3 Inference System Ih

3.1 Problem Format

An inference system is a set of inference rules that transforms an equational unification problem
into other. In our inference procedure, we use a set triple Γ||4||σ, where Γ is a unification
problem modulo the ACh theory, 4 is an h-depth set, and σ is a substitution. Let κ ∈ N be
a bound on the h-depth of the variables. A substitution θ satisfies the set triple Γ||4||σ if θ
satisfies every equation in Γ and σ, MaxV al(4) ≤ κ, and we write that relation as θ |= Γ||4||σ.
We also use a special set triple ⊥ for no solution in the inference procedure. Generally, the
inference procedure is based on priority of rules and also uses don’t care determinism when
there is no priority. i.e., any one rule applied from a set of rules without priority. Initially, Γ is
the non-empty set of equations to solve and the substitution σ is the identity substitution. The
inference rules are applied until either the set of equations is empty with most general unifier
σ or ⊥ for no solution. Of course, the substitution σ is a κ bounded E -unifier of Γ.

An inference rule is written in the following form Γ||4||σ
Γ′||4′||σ′ . This means that if something

matches the top of this rule, then it is to be replaced with the bottom of the rule. In the proofs
we will write inference rules as follows: Γ||4||σ ⇒Ih

{Γ1||41||σ1, · · · ,Γn||4n|σn} meaning to
branch and replace the left hand side with one of the right hand sides in each branch. The
only inference rule that has more than one branch is AC Unification. So we often just write
inference rules as follows: Γ||4||σ ⇒Ih

Γ′||4′||σ′. Let OV be the set of variables occurring
in the unification problem Γ and let NV be a new set of variables such that NV = V \
OV. Unless otherwise stated we assume that x, x1, . . . , xn, and y, y1, . . . , yn, z are variables
in V, v, v1, . . . , vn are in NV, and terms t, t1, . . . , tn, s, s1, . . . , sn in T (F ,V), and f and g
are uninterpreted function symbols. Recall that h is a unary, and the associativity and the
commutativity operator +. A fresh variable is a variable that is generated by the current
inference rule and has never been used before.

For convenience, we assume that every equation in the problem is in one of the following

flattened forms: x
?
= y, x

?
= h(y), and z

?
= y + x, where x, y, and z are variables. If not, we

apply flattening rules to put the equations into that form. These rules are performed before
any other inference rule. They put the problem into flattened form and all the other inference
rules leave the problem in flattened form, so there is no need to perform these rules again later.
It is necessary to update the h-depth set 4 with the h-depth values for each variable during
the inference procedure.

3.2 Inference Rules

Flattening. We present a set of inference rules for flattening. The variable v represents a fresh
variable in the following rules.
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Flatten Both Sides

{t1
?
= t2} ∪ Γ||4||σ

{v ?
= t1, v

?
= t2} ∪ Γ||{(v, 0)} ∪ 4||σ

if t1 and t2 /∈ V

Flatten Left +

{t ?
= t1 + t2} ∪ Γ||4||σ

{t ?
= v + t2, v

?
= t1} ∪ Γ||{(v, 0)} ∪ 4||σ

if t1 /∈ V

Flatten Right +

{t ?
= t1 + t2} ∪ Γ||4||σ

{t ?
= t1 + v, v

?
= t2} ∪ Γ||{(v, 0)} ∪ 4||σ

if t2 /∈ V

Flatten Under h

{t1
?
= h(t)} ∪ Γ||4||σ

{t1
?
= h(v), v

?
= t} ∪ Γ||{(v, 0)} ∪ 4||σ

if t /∈ V

Update h-Depth Set. We also present a set of inference rules to update the h-depth set. We
apply these rules immediately after applying any other rule in the inference system.
Update h

{x ?
= h(y)} ∪ Γ||{(x, c1), (y, c2)} ∪ 4||σ

{x ?
= h(y)} ∪ Γ||{(x, c1), (y, c1 + 1)} ∪ 4||σ

If c2 < (c1 + 1)

Update +

1.

{x1
?
= y1 + y2} ∪ Γ||{(x1, c1), (y1, c2), (y2, c3)} ∪ 4||σ

{x1
?
= y1 + y2} ∪ Γ||{(x1, c1), (y1, c1), (y2, c3)} ∪ 4||σ

If c2 < c1

2.

{x1
?
= y1 + y2} ∪ Γ||{(x1, c1), (y1, c2), (y2, c3)} ∪ 4||σ

{x1
?
= y1 + y2} ∪ Γ||{(x1, c1), (y1, c2), (y2, c1)} ∪ 4||σ

If c3 < c1

Splitting Rule. This rule takes the homomorphism theory into account. In this theory, we

can not solve equation h(y)
?
= x1 + x2 unless y can be written as the sum of two new variables

y = v1 + v2, where v1 and v2 are in NV. Without loss of generality we generalize it to n
variables x1, . . . , xn.

{w ?
= h(y), w

?
= x1 + · · ·+ xn} ∪ Γ||4||σ

{w ?
= h(y), y

?
= v1 + · · ·+ vn, x1

?
= h(v1), . . . , xn

?
= h(vn)} ∪ Γ||4′||σ

where n > 1, y 6= w, 4′ = {(v1, 0), . . . , (vn, 0)}∪4}, and v1, . . . , vn are fresh variables in NV.
Trivial. The Trivial inference rule is to remove trivial equations in the given problem Γ.

{t ?
= t} ∪ Γ||4||σ

Γ||4||σ

5
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Variable Elimination (VE). The Variable Elimination rule is to convert the equations into
assignments. In other words, it is used to find the most general unifier. The rule VE-2 is
performed last after all other inference rules have been performed. The rule VE-1 is performed
eagerly.

1.

{x ?
= y} ∪ Γ||4||σ

Γ{x 7→ y}||4||σ{x 7→ y} ∪ {x 7→ y}

2.

{x ?
= t} ∪ Γ||4||σ

Γ||4||σ{x 7→ t} ∪ {x 7→ t}
if t /∈ V and x does not occur in t

Decomposition. The Decomposition rule decomposes an equation into several sub-equations
if both sides top symbol matches.

{x ?
= f(s1, . . . , sn), x

?
= f(t1, . . . , tn)} ∪ Γ||4||σ

{x ?
= f(t1, . . . , tn), s1

?
= t1, . . . , sn

?
= tn} ∪ Γ||4||σ

if f 6= +

AC Unification. The AC Unification rule calls an AC unification algorithm to unify the AC
part of the problem. Notice that we apply AC unification only once when no other rule except
VE-2 can apply. In this inference rule Ψ represents the set of all equations with the + symbol
on the right hand side. Γ represents the set of equations not containing a + symbol. Unify
is a function that returns one of the complete set of unifiers returned by the AC unification
algorithm. GetEqs is a function that takes a substitution and returns the equational form of

that substitution. In other words, GetEqs([x1 7→ t1, . . . , xn 7→ tn]) = {x1
?
= t1, . . . , xn

?
= tn}.

Ψ ∪ Γ||4||σ
GetEqs(Unify Ψ) ∪ Γ||4||σ

Note that we have written the rule for one member of the complete set of AC unifiers of Ψ.
This will branch on every member of the complete set of AC unifiers of Ψ.
Occur Check. It is to determine if a variable on the left hand side of an equation occurs on
the other side of the equation. If it does, then there is no solution to the unification problem.
This rule has the highest priority.

{x ?
= f(t1, . . . , tn)} ∪ Γ||4||σ

⊥
If x ∈ Var(f(t1, . . . , tn)σ)

where Var(f(t1, . . . , tn)σ) represents set of all variables that occur in f(t1, . . . , tn)σ.
Clash. This rule checks if the top symbol on both sides of an equation is the same. If not, then
there is no solution to the problem, unless one of them is h and the other +.

{x ?
= f(s1, . . . , sm), x

?
= g(t1, . . . , tn)} ∪ Γ||4||σ
⊥

If f /∈ {h, +} or g /∈ {h, +}

Bound Check. The Bound Check is to determine if a solution exists within the bound κ,
a given maximum h-depth of any variable in Γ. If one of the h-depths in the h-depth set 4
exceeds the bound κ, then the problem has no solution.

Γ||4||σ
⊥

If MaxV al(4) > κ

6
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Unification Problem Real Time Solution # Sol. Bound

{h(y)
?
= y + x} 674ms ⊥ 0 10

{h(y)
?
= y + x} 15880ms ⊥ 0 20

{h(y)
?
= x1 + x2} 5ms Yes 1 10

{h(h(x))
?
= h(h(y))} 2ms Yes 1 10

{x + y1
?
= x + y2} 3ms Yes 1 10

{v ?
= x + y, v

?
= w + z, s

?
= h(t)} 46ms Yes 10 10

{v ?
= x1 + x2, v

?
= x3 + x4, x1

?
= h(y), x2

?
= h(y)} 100ms Yes 6 10

{h(h(x))
?
= v + w + y + z} 224ms Yes 1 10

{v ?
= (h(x) + y), v

?
= w + z} 55ms Yes 7 10

{f(x, y)
?
= h(x1)} 0ms ⊥ 0 10

{f(x1, y1)
?
= f(x2, y2)} 1ms Yes 1 10

{v ?
= x1 + x2, v

?
= x3 + x4} 17ms Yes 7 10

{f(x1, y1)
?
= g(x2, y2)} 0ms ⊥ 0 10

{h(y)
?
= x, y

?
= h(x)} 0ms ⊥ 0 10

Table 1: Tested results with bounded ACh-unification algorithm

4 Proof of Correctness

The proposed inference process eventually halts.

Lemma 1. There is no infinite sequence of inference rules.

Our inference system is truth-preserving.

Lemma 2 (Soundness). Let Γ||4||σ ⇒Ih
{Γ1||41||σ1, · · · ,Γn||4n|σn} be an inference rule.

Let θ be a substitution such that θ |= Γi||4i||σi. Then θ |= Γ||4||σ.

Of course, our inference system never loses any solution.

Lemma 3 (Completeness). Let Γ||4||σ be a set triple. Let Γ||4||σ ⇒Ih
{Γ1||41||σ1, · · · ,

Γn||4n|σn} be an inference rule. If θ |= Γ||4||σ, then there exists an i and a θ′, whose domain
is the variables in V ar(Γi) \ V ar(Γ), such that θθ′ |= Γi||4i||σi.

5 Implementation

We have implemented the algorithm in Maude [5]. We chose the Maude language because the
inference rules are very similar to the rules of Maude and an implementation will be integrated
into the Maude-NPA tool at some time. The Maude-NPA tool is written in Maude. The system
specifications are Ubuntu 14.04 LTS, Intel Core i5 3.20 GHz, and 8 GiB RAM with Maude 2.6.

We give a table to show some of our results. In the given table, we use five columns:
Unification problem, Real Time, time to terminate the program in ms (milli seconds), Solution
either ⊥ for no solution or Yes for solutions, # Sol. for number of solutions, and Bound κ. It
makes sense that the real time keeps increasing as the given h-depth κ increases for the first
problem where the other problems give solutions, but in either case the program terminates.

6 Conclusion

We introduced a set of inference rules to solve the unification problem modulo the homomor-
phism theory h over an AC symbol +, by enforcing bound k on the h-depth of any variable.

7
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Homomorphism is a property which is very common in cryptographic algorithms. So, it is
important to analyze cryptographic protocols in the homomorphism theory. Some of the al-
gorithms and details in this direction can be seen in [2, 6, 1]. However, none of those results
perform ACh unification because that is undecidable. One way around this is to assume that
an identity and an inverse exist, but because of the way the Maude-NPA works it would still be
necessary to unify modulo ACh. So an unification algorithm there becomes crucial. We believe
that our approximation is a good way to deal with it. We also tested some problems and the
results are shown in Table 1.
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Abstract

In Generalisation de termes en theorie equationnelle. Cas associatif-commutatif, a pair of terms
was presented over the language { f (,),g(,),a,b}, where f and g are interpreted over an idempotent
equational theory, i.e. g(x,x) = x and f (x,x) = x, resulting in an infinite set of generalizations. While
this result provides an answer to the complexity of the idempotent generalization problem for arbitrarily
idempotent equational theories (theories with two or more idempotent functions) the complexity of
generalization for equational theories with a single idempotent function symbols was left unsolved.
We show that the two idempotent function symbols example can be encoded using a single idempotent
function and two uninterpreted constants thus proving that idempotent generalization, even with a
single idempotent function symbol, can result in an infinite set of generalizations. Based on this result
we discuss approaches to handling generalization within idempotent equational theories.

1 Introduction
Anti-unification or term generalization algorithms aim at computing generalizations for given terms. A
generalization of t and s is a term r such that t and s are substitution instances of r, i.e. there exists σ

and µ such that rσ = t and rµ = s. Interesting generalizations are those that are least general (lggs).
However, it is not always possible to have a unique lgg. In these cases the task is either to compute a
minimal complete set of generalizations, or to impose restrictions so that uniqueness is guaranteed.

In particular, we consider anti-unification problems which allow equational interpretations of the func-
tion symbols and constants present in the term signature. This is known as equational anti-unification or
E-generalization. When the equational theory does not interpret any of the function symbols or constants
in the term signature the resulting generalizations are referred to as syntactic. For most of the commonly
considered equational theories the minimal complete set of generalizations is finite, for example, theories
including commutativity and associative function symbols discussed in [1]. However, as pointed out
in [8], this need not be the case. A pair of terms constructed from the signature { f (·, ·),g(·, ·),a,b} where
f and g are interpreted as idempotent functions resulted in an infinite set of generalizations, though it
was not shown to be the minimal complete set. While the case of two idempotent function symbols
was addressed in [8], the case of generalization for terms constructed from a signature with a single

∗This research is supported by the FWF project P28789-N32.
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idempotent function symbol, i.e. { f (·, ·),a,b} was not discussed. This gap implies an interesting question
concerning modular generalization algorithms like the ones discussed in [1].

The result reported in this paper has been motivated by its influence on developing a combination
method for signature-disjoint generalization theories. Namely, as shown by Pottier in [8], anti-unification
problems with two idempotent function symbols may have infinitely many incomparable generalizations.
If anti-unification problems with one idempotent symbol had only finitely many incomparable solutions, it
would be a serious problem for the prospect of developing a combination method: finitary generalization
algorithms would have been impossible to combine. However, our result shows that it is not the case.

Combination methods for unification algorithms, constraint solvers, and decision procedures have
been studied in detail [2, 3, 5, 4, 6, 9, 10]. Though surprisingly, it has been shown that term generalization
when the signature contains a function which is associative, commutative and idempotent is finitary.
This follows from Theorem 2 of [7]. Such varying results provide motivations for investigating term
generalization as discussed in this paper and removes an obstacle to study such methods for generalization
algorithms as well.

2 Preliminaries
We now outline the basic concepts needed to understand term generalizations and the results outlined in
later sections. Our term language L is built from a finite signature of function and constant symbols
Σ and a countable set variable symbols V . Function symbols have a fixed arity, i.e. the number of
arguments, and constant symbols are essentially function symbols with arity zero. If necessary, we denote
the set of variables of a term t by Vars(t).

Each symbol f ∈ Σ in the signature has an associated equational theory Ax( f ). When Ax( f ) is empty
the function or constant symbol is left uninterpreted. We will only consider in this work function symbols
f interpreted as idempotent, Ax( f ) = {I} , that is binary functions such that f (x,x) = x.

When two terms s and t are equivalent over an equational theory E we write s =E t. In this work we
will only consider the equational theory IF where F is a set of function symbols interpreted as idempotent.

A Substitution is a finite set of pairs {X1 7→ t1, . . . ,Xn 7→ tn} where Xi is a variable, ti is a term, and
the X’s are pairwise distinct variables. The notions of substitution domain and range are also standard
and are denoted, respectively, by Dom and Ran.

We use postfix notation for substitution applications, writing tσ instead of σ(t). As usual, the
application tσ affects only the occurrences of variables from Dom(σ) in t. The composition of σ and ϑ

is written as juxtaposition σϑ and is defined as x(σϑ) = (xσ)ϑ for all x.
A substitution σ1 is more general than σ2, written σ1 � σ2, if there exists ϑ such that Xσ1ϑ = Xσ2

for all X ∈ Dom(σ1)∪Dom(σ2). The strict part of this relation is denoted by ≺. The relation � is a
partial order and generates the equivalence relation which we denote by '. We overload � by defining
s � t if there exists a substitution σ such that sσ = t. The focus of this work is generalization in the
presence of equational axioms thus we need a more general concept of ordering of substitutions/terms by
their generality. We say for two terms s, t are s =E t if they are equivalent modulo E . Under this notion
of equality we can say that a substitution σ1 is more general modulo an equational theory E than σ2
written σ1 �E σ2 if there exists ϑ such that Xσ1ϑ =E Xσ2 for all X ∈ Dom(σ1)∪Dom(σ2) Note that
≺ and ' and the term extension are generalized accordingly. From this point on we will use the ordering
relation modulo an equational theory when discussing generalization.

A term t is called a generalization or an anti-instance modulo an equational theory E of two terms
t1 and t2 if t �E t1 and t �E t2. It is the least general generalization (lgg in short), aka a most specific
anti-instance, of t1 and t2, if there is no generalization s of t1 and t2 which satisfies t ≺E s.

An anti-unification problem (Briefly AUP) is a triple X : t , s where t and s are terms constructed
from the signature Σ, and X does not occur in t and s. The variable X is called a generalization variable.

2
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Generalization variables are written with capital letters X ,Y,Z, . . .. Note that generalization variables are
not used explicitly in this work but they sere syntactic purpose in most algorithms defined in literature,
thus we keep them to conform with common syntactic expressions. The size of a set of AUPs is defined
as |{X1 : t1 , s1, . . . ,Xn : tn , sn}|= ∑

n
i=1 |ti|+ |si|. A generalization of an AUP X : t , s is a term r such

that there exists substitutions σ1 and σ2 such that Dom(σ1) = Dom(σ2) = V (r) and rσ1 = t and rσ2 = s
A generalization r of X : t , s is least general (or most specific) modulo an equational theory E if

there is no generalization r′ of X : t , s such that r ≺E r′.

3 Idempotent Generalization with two symbols
We will now consider an alphabet Σ = { f (·, ·),g(·, ·),a,b}. Both f and g are idempotent function
symbols (our equational theory is E = I f ,g), that is f (x,x) =I f ,g x and g(x,x) =I f ,g x. Now we consider
the following generalization problem:

X : f (a,b), g(a,b) (1)

The seemingly simple generalization problem of Equation 1 results in an infinite set of least general gen-
eralizations. This follows from the production of the first two least general generalizers g( f (a,x), f (y,b))
and f (g(a,x),g(y,b)) which we refer to as G1 and G2, respectively. It is quite simple to check that these
two terms are indeed generalizers and are least general. In [8], an infinite set of generalizations was
produced by the following recursive construction:

S0 =G1 Sn+1 = f (G1,g(Sn,G2)) (2)

Notice that the generalizer produced at each step is least general and is not comparable with the
generalizers produced at the previous step and thus, the construction produces an infinite sequence of
incomparable least general generalizers. However this is not the minimal complete set being that the
construction is limited to repeated use of {G1,G2}. Any previously constructed generalizer can be used.
Essentially, let h ∈ { f ,g} and S the set of least general generalizations of Equation 1, then h(S1,S2) is a
least general generalizations of Equation 1 when S1 is distinct from S2. We elucidate this construction
further after presenting our solution to the generalization problem for one idempotent function symbol.

4 Idempotent Generalization with a single function symbol
We will now consider an alphabet Σ = {h(·, ·),a,b} where h is an idempotent function symbol (our
equational theory is E = Ih). Our goal is to show that a term signature with a single binary function
symbol interpreted as idempotent also allows the construction of AUPs with infinitely many lggs. We
solve this problem by encoding the two symbol case into the one symbol case. Essentially we write f (·, ·)
as h(a,h(·, ·)) and g(·, ·) as h(b,h(·, ·)). Thus, the generalization problem from the previous section is
now:

h(a,h(a,b)), h(b,h(a,b)) (3)

The reader might notice right away that this has a solution h(x,h(a,b)), however, this solution isn’t
of much interest to us because we cannot produce an infinite construction using it alone, but it can be
considered as one of the least generalizers within the construction. Also, it happens to be the case that
there are two additional least general generalizers which are incomparable to it. These generalizers,
which are incomparable to h(x,h(a,b)), are as follows:

G′1 =h(h(x,h(x,b)),h(a,h(x,b))) G′2 = h( f (x,h(a,x)),h(h(x,b),h(a,b)))

3
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Figure 1: Geometric proof of Theorem 1 for |A|= 3.

Notice that these generalizers are even simpler than those produced in the previous example given that
the domain of the substitutions contain a single variable x. Furthermore, this variable is substituted by
one of the two constants. Using the recursive construction outlined in Equation 2, replacing G1 and G2
by G′1 and G′2 we produce a similar infinite set as in the Pottier example.

Concerning the construction of all least general generalizations constructable from the set
{h(x,h(a,b)),G′1,G′2} consider the following theorem.

Theorem 1. Let A be a finite set, P(S,S′) = {(a,b)|a ∈ S , b ∈ S′ , a 6= b}, and Sn the following
recursive set construction:S0 = { /0}, S1 = A, and S(n+1) = Sn ∪P(Sn,Sn). Then for n ≥ 1, |S(n+1)| =
|Sn|2−|S(n−1)|2 + |S(n−1)|.

Proof. Let us consider the case of S2 = S1 ∪P(S1,S1) we know that |S1| = |A| and that |P(S1,S1)| =
|A|2−|A| because (a,a) 6∈ P(S1,S1) for a ∈ A. Thus, |S2|= |A|2 which is precisely given by the formula
in the theorem |S2| = |S1|2− |S0|2 + |S0| = |A|2− 1+ 1 = |A|2. For the induction hypothesis, let us
assume the theorem holds for Sn and show that it holds for S(n+1). We know that Sn contains S(n−1) by
definition and thus we can consider the subsets of Sn, S(n−1) and Sn \S(n−1), Note that the elements of
P(S(n−1),S(n−1)) are already members of Sn\S(n−1) and thus do not need to be considered. But we do need
to consider the following cases P(S(n−1),Sn \ S(n−1)), P(Sn \ S(n−1),S(n−1)), P(Sn \ S(n−1),Sn \ S(n−1))

which have size |S(n−1)|(|Sn| − |S(n−1)|, |S(n−1)|(|Sn| − |S(n−1)|), (|Sn| − |S(n−1)|)2 − (|Sn| − |S(n−1)|),
respectively. Thus, we get that the size |S(n+1)| is the following:

2 · |S(n−1)|(|Sn|− |S(n−1)|+(|Sn|− |S(n−1)|)2− (|Sn|− |S(n−1)|)+ |Sn|=

2|S(n−1)||Sn|−2|S(n−1)|2 +(|Sn|2−2|Sn||S(n−1)|+ |S(n−1)|2 + |S(n−1)|= |Sn|2−|S(n−1)|2 + |S(n−1)|

Proving the induction step. See Figure 1 for a geometric proof of the theorem.

Concerning the O(22n
) growth rate in terms of the initial set size |S1| , consider the ratio between

the smaller square’s area |S(n−1)| and the larger square’s (|S(n−1)|2−|S(n−1)|)2 which is precisely
1 : O(|Sn−1|2). Iterating this provides O(22n

) growth rate.

4
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5 Conclusion
We have shown that even a simple term signature with a single binary function interpreted as idempotent
results in an infinite set of generalizations. Theorem 1 provides information concerning the growth of the
set of least general generalizations in terms of the number of nestings of idempotent function symbols.
Further analysis provides a growth rate of O(22n

) in terms of the number of nested function symbols.
This implies that the minimal complete set of generalizations is at least as large as this construction
and thus infinite. However, we have not provided a precise construction of the minimal complete set
of generalizations, only a lower bound. In future work we plan to investigate the construction of the
minimal complete set of generalizations and hopefully find a precise expression of its construction as
well as an understanding of modular algorithms for idempotent generalization.
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Abstract

We study anti-unification under the condition that some mismatches in the names of function
symbols is tolerated. The mismatches are expressed by proximity relations, which are reflexive,
symmetric, but not transitive fuzzy binary relations. Their crisp version corresponds to undirected
graphs. Computing all maximal clique partitions in them is needed to compute least general gen-
eralizations with respect to proximity relations. We report about our progress in developing both
all-clique-partitions and anti-unification algorithms.

1 Introduction
In this paper we study anti-unification under the condition that some mismatches between function
symbol names is tolerated. Names which are ‘close to each other’ should not be distinguished. Such
a treatment of symbols is adequate in situations where one has to manage imprecise information, for
example, for detecting clones in copied and slightly modified software code.

The relation of ‘being close’ is not transitive: For instance, if one considers two cities being close to
each other if the distance between them is not more than 200 km, then Salzburg is close to Linz (133 km)
and Linz is close to Vienna (185 km), but Salzburg is not close to Vienna (300 km). Nontransitivity has
to be dealt in a special way. Proximity relations (reflexive symmetric fuzzy binary relations) characterize
the notion of ‘being close’ numerically. They become crisp once we fix the threshold from which on the
distance between the objects can be called ‘close’.

We consider a first-order language where function symbols are in a proximity relation with each
other. To compute generalizations in this language, we assume that the threshold (so called λ-cut) is
fixed and we know which symbols are close to each other and which are not. The obtained crisp relation
can be represented as an undirected graph, and symbols that belong to a complete subgraph (a clique) of
it should be considered ‘close’ to each other. But the same symbol might belong to two or more cliques,
and we need to choose one of them to which the symbol is assigned. Hence, we essentially need to
partition the graph into maximal cliques, treat the symbols in the same clique as being the same, and
apply the first-order anti-unification algorithm to compute generalizations.

This approach leads to two problems. First, while one can easily compute one maximal vertex-clique
partition of a graph [7, 4], computing all maximal ones is more involved. But we need them to compute
least general generalizations. We were not able to find an appropriate algorithm in the literature and,
therefore, decided to design and implement one ourselves. It is optimal in the sense that each maximal
∗Supported by Austrian Science Fund (FWF) under the project P 28789-N32



clique partition is computed only once, and generating and discarding false answers is avoided. We
briefly describe the algorithm in this paper.

The second problem is related to the anti-unification algorithm. Computing all maximal clique parti-
tions of the given proximity relation at the beginning and then switching to the standard anti-unification
would be an overkill, because many non-minimal answers will be computed, or the same answers might
be returned many times. Therefore, it is more reasonable to incorporate the clique partitioning procedure
into the anti-unification algorithm and perform partitions only on demand. The algorithm described in
this paper works in this way.

In related work, Aı̈t-Kaci and Pasi [1] studied anti-unification with respect to similarity relations,
which differ from proximity relations by being transitive and, in this way, are more specific. On the other
hand, they allow arity mismatch between symbols, which we do not consider in this paper. Unification
with proximity relations has been studied in [6], from which we take the basic definitions.

This work is still in progress. We are currently in the process of a detailed investigation of the
properties of presented algorithms, and implementing anti-unification. The latter, after implementation,
will be included into our online open-source library of unification and anti-unification algorithms [3].

2 Terms, Substitutions, Proximity Relations
We consider first-order terms defined as usual: t ∶= x ∣ f(t1, . . . , tn), where x is a variable and f is
an n-ary function symbol with n ≥ 0. We use the letters f, g, h, a, b, c, d and e for function symbols,
x, y, z, u, v and w for variables, and s, t, l, and r for terms.

For a term t, its set of positions pos(t) is a set of sequences of positive integers defined as follows:
If t is a variable, then pos(t) = {ε}, where ε is the empty sequence; If t = f(s1, . . . , sn), then pos(t) =
{ε}∪⋃ni=1{i.p ∣ p ∈ pos(si)}. By t[p] we denote the symbol in t at position p. The notation t∣p denotes
the subterm of t at position p.

A substitution is a mapping from variables to terms, which is the identity almost everywhere. We
will use the traditional finite set representation of substitutions. The lower case Greek letters are used to
denote substitutions, with the exception of the identity substitution for which we write Id . The related
notions such as substitution application, term instance, substitution composition, etc. are defined in the
usual way, see, e.g. [2].

A binary fuzzy relation on a set S is a fuzzy subset on S × S, that is, a mapping from S × S to the
real interval [0,1]. IfR is a fuzzy relation on S and λ is a number 0 ≤ λ ≤ 1, then the λ-cut ofR on S,
denotedRλ, is an ordinary (crisp) relation on S defined asRλ ∶= {(x, y) ∣R(x, y) ≥ λ}.

A fuzzy relationR on a set S is called a proximity relation on S iff it is reflexive, i.e.,R(x,x) = 1 for
all x ∈ S, and symmetric, i.e., R(x, y) = R(y, x) for all x, y ∈ S. A special class of proximity relations
are similarity relations, which are transitive proximity relations: R(x, z) ≥ min(R(x, y),R(y, z)) for
all x, y, z ∈ S.

A cut value of a proximity relation R on S is a number λ such that R(x, y) = λ for some x, y ∈ S.
The set of cut values ofR are called approximation levels ofR.

Given a proximity relation R on a set S and λ ∈ [0,1], a proximity block of level λ (or, shortly, a
λ-block) is a subset B of S such that the restriction of Rλ to B is a total relation, and B is maximal
with this property.

Below we consider proximity relations defined on the set of variables and function symbols and
assume that no variable is close to any function symbol and to any other variable. Hence, variables
always belong to singleton blocks of level 1. Also, function symbols of different arities are not close to
each other, i.e., each block consists of symbols of the same arity.

The notion of proximity is defined for terms. The intuition behind it, according to [6], is based on
the following idea: two terms t1 and t2 are λ-approximate when they have the same set of positions;



their symbols, in their corresponding positions, belong to the same λ-block; and a certain symbol is
always assigned to the same λ-block (throughout a computation). The following definition formalizes
this intuition:

Definition 1. Given a proximity relation R on F and λ ∈ [0,1], two terms t and s are λ-approximate
(or λ-close) with respect toR, written t ≈R,λ s, if the following conditions hold:

1. pos(t) = pos(s), i.e, the terms have exactly the same positions, hence, the same structure.
2. For all positions p ∈ pos(t), t[p] and s[p] belong to the same λ-block of the relationR.
3. For all positions p, p′ ∈ pos(t) with p ≠ p′,

(a) If t[p] = t[p′], then s[p] and s[p′] belong to the same λ-block ofR.
(b) If s[p] = s[p′], then t[p] and t[p′] belong to the same λ-block ofR.

WhenR is clear from the context, we will just write t ≈λ s. The relation ⪯R,λ modifies its classical
counterpart, the instantiation quasi-ordering ⪯ (see, e.g., [2]) by replacing equality with ≈R,λ: A term
t is more general than s at level λ with respect to R, written t ⪯R,λ s, iff there exists a substitution ϕ
such that tϕ ≈R,λ s.

The strict part of the ⪯R,λ relation is denoted by ≺R,λ. The fact that ≈R,λ is not a transitive relation
implies that ⪯R,λ is not a quasi-ordering.

Given a proximity relationR and a cut λ, a term r is a common (λ,R)-generalization of t and s iff
it is more general than both t and s at level λ with respect to R. It is a least general common (λ,R)-
generalization ((λ,R)-lgg) of t and s iff it is a common (λ,R)-generalization of t and s and there is no
term l such that l ≺R,λ r holds.

Below we assume that λ is fixed and, hence, consider crisp version of proximity relations. Such a
relation can be represented as undirected graph, whose maximal cliques (maximal complete subgraphs)
are counterparts to blocks. The goal is to design an algorithm which computes R-lggs for a given pair
of terms and the proximity relation R. We do not distinguish between R and the graph that represents
it.

Example 1. If (a, b) and (a, c) both belong toR but (b, c) does not, then f(a, a) and f(b, b) are close
to each other, but f(a, a) and f(b, c) are not. The latter pair has twoR-lggs: f(a, x) and f(x, a).

A clique in an undirected graph G = (V,E) is a set of vertices W ⊆ V such that for each pair of
vertices in W there is an edge in E. A clique is maximal if it is not a proper subset of another clique. A
clique partition of a graph G is a set of its cliques {C1, . . . ,Cn} such that ⋃ni=1Ci = V and Ci ∩Cj = ∅
for all 1 ≤ i, j ≤ n, i ≠ j.

Let S1 = {C1, . . . ,Cn} and S2 = {D1, . . . ,Dm} be two sets of cliques of the same graph. We say
that S1 is subsumed by S2, written S1 ⊑ S2, iff for all 1 ≤ i ≤ n there exists 1 ≤ j ≤m such that Ci ⊆Dj .
If S1 and S2 are, in particular, partitions, then we also say that S1 is a subpartition of S2 if S1 ⊑ S2. A
clique partition of a graph is maximal if it is not properly subsumed by any other partition of the graph.
A graph may have several maximal clique partitions. We will use them in the anti-unification algorithm
in Sect. 3. In Sect. 4 we discuss an algorithm that computes all maximal clique partitions in a graph.

3 The Proximity-Based Anti-Unification Algorithm
Our anti-unification algorithm works on tuples A;C;S;R;G, called configurations. Here A, C, and
S are sets of anti-unification triples (AUTs, constructions of the form x ∶ s ≜ t, meaning that x is a
variable that generalizes s and t),R is a crisp version of a proximity relation, and G is a term. The rules
transform configurations into configurations. Intuitively, the problem set A contains AUTs that have not



been solved yet, the set C contains AUTs of the form x ∶ a ≜ b, where a and b are constants such that
(a, b) ∈ R and the AUTs are not solved yet. The store S contains the already solved AUTs, R is the
proximity relation which gets more and more refined during computation by identifying symbols that
belong to the same clique in some partition of R, and G is the generalization which becomes more and
more specific as the algorithm progresses by applying the rules.

Dec: Decomposition
{x1 ∶ f1(s

1
1, . . . , s

1
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) ≜ g1(t
1
1, . . . , t

1
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), . . . , xn ∶ fn(s
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n
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{yj1 ∶ s
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1 ≜ t

j
1, . . . , y

j
kj
∶ sjkj ≜ t

j
kj

∣ 1 ≤ j ≤m}; C;

{xj ∶ fj(s
j
1, . . . , s

j
kj
) ≜ gj(t

j
1, . . . , t

j
kj
) ∣m + 1 ≤ j ≤ n} ∪ S; R′; Gϑ,

where (a) ki > 0 and (fi, gi) ∈ R for all 1 ≤ i ≤ n; (b) there exist a maximal vertex-clique partition
P of the subrelation Q = {(f1, g1), . . . , (fn, gn)} ⊆ R and the index 1 ≤ m ≤ n such that for each
(fj , gj), 1 ≤ j ≤ m, there is a clique Cl ∈ P with fj , gj ∈ Cl, and for no (fj , gj), m + 1 ≤ j ≤ n
there is such a clique; (c) R′ is obtained from R by replacing the subrelation Q by its partition P ;
(d) ϑ = {xj ↦ fj(y

j
1, . . . , y

j
kj
) ∣ 1 ≤ j ≤m}.

Sol: Solve
{x ∶ f(s̃) ≜ g(t̃)} ⊎A; C; S; R; GÔ⇒ A; C;{x ∶ f(s̃) ≜ g(t̃)} ∪ S; R; G, if (f, g) ∉R.

Post: Postpone
{x ∶ a ≜ b} ⊎A; C; S; R; GÔ⇒ A; {x ∶ a ≜ b} ∪C;S; R; G, if (a, b) ∈R.

Gen-Con: Generalize Constants
∅;{x1 ∶ a1 ≜ b1, . . . , xn ∶ an ≜ bn}; S; R; GÔ⇒ ∅; ∅; {xj ∶ aj ≜ bj ∣m + 1 ≤ j ≤ n} ∪ S; R′; Gϑ,

where (a) (ai, bi) ∈ R for all 1 ≤ i ≤ n; (b) there exist a maximal vertex-clique partition P of the
subrelation Q = {(a1, b1), . . . , (an, bn)} ⊆ R and the index 1 ≤ m ≤ n such that for each (aj , bj),
1 ≤ j ≤ m there is a clique Cl ∈ P with aj , bj ∈ Cl, and for no (aj , bj), m + 1 ≤ j ≤ n there is such a
clique; (c)R′ is obtained fromR by replacing Q by its partition P ; (d) ϑ = {xi ↦ ai ∣ 1 ≤ i ≤m}.

To anti-unify two terms s and t with respect to the proximity relation R, we create the initial tuple
{x ∶ s ≜ t};∅;∅;R;x and apply the rules in all ways as long as possible. In the search space, branching
is caused by all possible maximal clique partitions in Dec and Gen-Con. Generalizations in successful
branches form the computed result. We call this algorithm PR-AUlin. The subscript lin indicates that it
computes linear generalizations (i.e., those in which each generalization variable appears at most once).

Theorem 1. PR-AUlin terminates and computes a minimal complete set of linear generalizations.

Proof sketch. Termination follows form the fact that Gen-Con can be applied only once and the other
rules strictly reduce the number of symbols in A. In computed answers, no generalization variable ap-
pears more than once, because there is no rule that would merge them. Hence, computed generalizations
are linear. They are also lggs among linear generalizations, because (a) the algorithm decomposes the
terms as much as possible, and (b) it maximizes the number of nonvariable subterms appearing in gener-
alizations, which is done with the help of clique partitions of subrelations (not of the entire relation!) at
each decomposition and constant generalization steps. All linear lggs are computed, because branching
at Dec and Gen-Con rules explores all maximal clique partitions.



Example 2. For terms f(g1(g2(a)), g2(a), a) and f(g2(g3(b)), g3(c), b) and the relation R given
in the form of maximal clique set (not a partition) {{f},{g1, g2},{g2, g3},{a, b},{b, c}}, the algo-
rithm PR-AUlin returns two R-lggs: f(g1(z1), y2, a) and f(y1, g(y2), a) and misses the nonlinear one
f(g1(y2), y2, y3). We illustrate now how the algorithm works:

{x ∶ f(g1(g2(a)), g2(a), a) ≜ f(g2(g3(b)), g3(c), b)}; ∅; ∅; R; xÔ⇒Dec

{y1 ∶ g1(g2(a)) ≜ g2(g3(b)), y2 ∶ g2(a) ≜ g3(c), y3 ∶ a ≜ b}; ∅; ∅; R; f(y1, y2, y3)Ô⇒Post

{y1 ∶ g1(g2(a)) ≜ g2(g3(b)), y2 ∶ g2(a) ≜ g3(c)}; {y3 ∶ a ≜ b}; ∅; R; f(y1, y2, y3).

At this stage, the subrelation {(g1, g2), (g2, g3)} of R can be partitioned in two ways, which gives two
new relations R1 = {{f},{g1, g2},{g3},{a, b},{b, c}} and R2 = {{f},{g1},{g2, g3},{a, b},{b, c}}.
Therefore, we can use the Dec rule and proceed in two different ways:

Alternative 1. Proceeding byR1.

{y1 ∶ g1(g2(a)) ≜ g2(g3(b)), y2 ∶ g2(a) ≜ g3(c)}; {y3 ∶ a ≜ b}; ∅; R; f(y1, y2, y3)Ô⇒Dec

{z1 ∶ g2(a) ≜ g3(b)}; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c)}; R1; f(g1(z1), y2, y3)Ô⇒Sol

∅; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c), z1 ∶ g2(a) ≜ g3(b)}; R1; f(g1(z1), y2, y3)Ô⇒Gen-Con
∅; ∅; {y2 ∶ g2(a) ≜ g3(c), z1 ∶ g2(a) ≜ g3(b)}; R11; f(g1(z1), y2, a).

where R11 = {{f},{g1, g2},{g3},{a, b},{c}}. Note that if we required in the condition of the
Gen-Con rule to partition the relation itself (instead of its subrelation), we would get also R12 =

{{f},{g1, g2},{g3},{a},{b, c}}, which would lead to another successful branch

∅; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c), z1 ∶ g2(a) ≜ g3(b)}; R1; f(g1(z1), y2, y3)Ô⇒Gen-Con
∅; ∅; {y2 ∶ g2(a) ≜ g3(c), z1 ∶ g2(a) ≜ g3(b), y3 ∶ a ≜ b}; R12; f(g1(z1), y2, y3).

However, the computed generalization is not an lgg, since it is more general than the previous one.

Alternative 2. Proceeding byR2.

{y1 ∶ g1(g2(a)) ≜ g2(g3(b)), y2 ∶ g2(a) ≜ g3(c)}; {y3 ∶ a ≜ b}; ∅; R; f(y1, y2, y3)Ô⇒Dec

{z2 ∶ a ≜ c}; {y3 ∶ a ≜ b}; {y1 ∶ g1(g2(a)) ≜ g2(g3(b))}; R2; f(y1, g(z2), y3)Ô⇒Sol

∅; {y3 ∶ a ≜ b}; {y1 ∶ g1(g2(a)) ≜ g2(g3(b)), z2 ∶ a ≜ c}; R2; f(y1, g(y2), y3)Ô⇒Gen-Con
∅; ∅; {y2 ∶ g2(a) ≜ g3(c)}; R21; f(y1, g(y2), a),

whereR21 = {{f},{g1},{g2, g3},{a, b},{c}}. Again, if we were allowed to partition the wholeR2 in
Gen-Con, we would get another partition R22 = {{f},{g1},{g2, g3},{a},{b, c}}, which would give
the following successful branch:

∅; {y3 ∶ a ≜ b}; {y1 ∶ g1(g2(a)) ≜ g2(g3(b)), z2 ∶ a ≜ c}; R2; f(y1, g(y2), y3)Ô⇒Gen-Con
∅; ∅; {y2 ∶ g2(a) ≜ g3(c), y3 ∶ a ≜ b}; R22; f(y1, g(y2), y3).

However, the solution obtained in this branch is more general than the previous one.

As the next step, we extend the algorithm to add a rule for merging variables. It uses a partial
function refine({s1 ≈ t1, . . . , sn ≈ tn},R), which is supposed to refine the given relation R into a new
relationR′ so that si ≈R′ ti, 1 ≤ i ≤ n, if such a refinement ofR exists.



Mer: Merge
A; C; {x ∶ s1 ≜ t1, y ∶ s2 ≜ t2} ⊎ S; R; GÔ⇒ A; C; {x ∶ s1 ≜ t1} ∪ S; R

′; G{y ↦ x},

whereR′ = refine({s1 ≈ s2, t1 ≈ t2},R).

The obtained algorithm is denoted by PR-AU. The function refine is defined as follows:

refine(∅,R) =R. refine({t ≈ t} ⊎E,R) = refine(E,R).

refine({f(s1, . . . , sn) ≈ g(t1, . . . , tn)} ⊎E,R) = refine({s1 ≈ t1, . . . , sn ≈ tn} ∪E,R
′
),

if (f, g) ∈ R and R′ = R ∖ (S1 ∪ S2), where S1 = {(f, h) ∣ (g, h) ∉ R} ∪ {(h, f) ∣ (g, h) ∉ R} and
S2 = {(g, h) ∣ (f, h) ∉R} ∪ {(h, g) ∣ (f, h) ∉R}. Otherwise, refine is not defined.

From the specification of refine it follows that Mer is correct. It is also an alternative to the rules
above, meaning that it would introduce additional branching, because of which PR-AU might recompute
the same solution on different branches. For instance, in Example 2, when we proceed by R1, we get
two branches that compute the same result (recall thatR11 = {{f},{g1, g2},{g3},{a, b},{c}}):

{y1 ∶ g1(g2(a)) ≜ g2(g3(b)), y2 ∶ g2(a) ≜ g3(c)}; {y3 ∶ a ≜ b}; ∅; R; f(y1, y2, y3)Ô⇒Dec

{z1 ∶ g2(a) ≜ g3(b)}; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c)}; R1; f(g1(z1), y2, y3)Ô⇒Sol

∅; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c), z1 ∶ g2(a) ≜ g3(b)}; R1; f(g1(z1), y2, y3)Ô⇒Gen-Con
∅; ∅; {y2 ∶ g2(a) ≜ g3(c), z1 ∶ g2(a) ≜ g3(b)}; R11; f(g1(z1), y2, a)Ô⇒Mer

∅; ∅; {y2 ∶ g2(a) ≜ g3(c)}; R11; f(g1(y2), y2, a)

and

{y1 ∶ g1(g2(a)) ≜ g2(g3(b)), y2 ∶ g2(a) ≜ g3(c)}; {y3 ∶ a ≜ b}; ∅; R; f(y1, y2, y3)Ô⇒Dec

{z1 ∶ g2(a) ≜ g3(b)}; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c)}; R1; f(g1(z1), y2, y3)Ô⇒Sol

∅; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c), z1 ∶ g2(a) ≜ g3(b)}; R1; f(g1(z1), y2, y3)Ô⇒Mer

∅; {y3 ∶ a ≜ b}; {y2 ∶ g2(a) ≜ g3(c)}; R1; f(g1(y2), y2, y3)Ô⇒Gen-Con
∅; ∅; {y2 ∶ g2(a) ≜ g3(c)}; R11; f(g1(y2), y2, a).

However, we can not postpone Mer till the end, after A and C get empty (as it is usually done in
anti-unification algorithms), because in this case we will miss solutions, as the example below shows.

Example 3. Let R = {{f},{h1},{h2},{a},{g0, g1},{g0, g2}}, s = f(g0(a), h1(g0(a)), h1(g0(a))),
and t = f(g1(a), h2(g2(a)), h2(g0(a))). Then PR-AU computes two solutions: f(g0(a), y2, y3) and
f(y1, y2, y2). The first one is obtained by applying Sol before Mer, and the second one in the other way
around. However, if Mer is applied only at the very end, then the first solution is not computed.

Merging variables can significantly increase the size of the computed set of generalizations:

Example 4. Let the arity of f be n + 2,R = {{f},{h1},{h2},{a},{g0, g1}, . . . ,{g0, gn}} and

s = f(g0(a), h1(g0(a)), . . . , h1(g0(a)), h1(g0(a))),

t = f(g1(a), h2(g2(a)), . . . , h2(gn(a)), h2(g0(a))).

PR-AUlin computes only one generalization: f(g0(a), y2, . . . , yn, yn+1. With PR-AU, we have, in
addition, n − 1 other generalizations: f(y1, y2, . . . , yn, y2), . . . , f(y1, y2, . . . , yn, yn).

Theorem 2. PR-AU computes a minimal complete set of generalizations.
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Figure 1: All maximal clique partitions of a graph.

4 Computing All Maximal Clique Partitions in a Graph
The anti-unification algorithm in the previous section relies on the computation of all maximal clique
partitions in an undirected graph. We describe the corresponding algorithm here.

First, we compute all maximal cliques of the given graph and give each of them a name. All maximal
cliques can be computed, e.g., by Bron-Kerbosch algorithm [5]. For the graph in Fig. 1, there are four
of them: C1 = {1,2,3},C2 = {2,3,4},C3 = {4,5,6},C4 = {5,6,7}. These cliques will get revised
during computation by removing elements from them. At the end, we report those which are not empty.

After computing the initial cliques, we collect all shared vertices and indicate among which cliques
they are shared. In the graph in Fig. 1, the shared vertices are 2, 3, 4, 5, and 6. We have 2 ∈ C1 ∩ C2,
3 ∈ C1 ∩C2, 4 ∈ C2 ∩C3, 5 ∈ C3 ∩C4, and 6 ∈ C3 ∩C4.

Our goal is to compute each solution exactly once. At the end, it can happen that some cliques
consist of shared vertices only. However, such cliques can have any of the names of the original cliques
they originate from. For instance, the node 4 alone can form a clique either as C2 or C3, giving two
identical partitions which differ only by the clique names:

C1 = {1,2,3}, C2 = {4}, C3 = ∅, C4 = {5,6,7},

C1 = {1,2,3}, C2 = ∅, C3 = {4}, C4 = {5,6,7}.

We want to avoid such duplicates. Therefore, for such alternatives we choose one single clique to which
they belong in this configuration, and forbid the others. For the example graph in Fig. 1, we can allow
the vertices 2 and/or 3 to form a clique as C2, the vertex 4 to form a clique as C3, and the vertices 5



and/or 6 to form a clique as C4. (Note that allowing does not necessarily mean that we will get result
cliques of that form.) Thus, the forbidden configurations are C1 ≠ {2},C1 ≠ {3},C1 ≠ {2,3},C2 ≠

{4},C3 ≠ {5},C3 ≠ {6},C3 ≠ {5,6}.
Starting from the initial set of cliques, our algorithm All-Maximal-Clique-Partitions performs the

following steps:

1. Compute the set of shared vertices and the forbidden configurations.

2. If the set of shared vertices is empty, return the current set of cliques and stop.

3. Select a shared vertex and nondeterministically assign it to one of the cliques it belongs to. Re-
move the vertex from the other cliques and from the set of shared vertices.

4. For each pair of cliques Ci,Cj , where Ci ⊆ Cj , make Ci empty and adjust the set of shared
elements. In addition, if Ci was the chosen clique for the shared elements, remove those elements
from the forbidden list of Cj .

5. If the union of two nonempty cliques is a subset of an original clique, or if a forbidden configura-
tion arises, stop the development of this branch with failure. Otherwise go to step 2.

Checking for the subset relations is needed to avoid computing cliques which are not maximal. For
instance, the partition C1 = {1,2}, C2 = {3}, C3 = {4}, C4 = {5,6,7} should be rejected because
{1,2} ∪ {3} is a subset of the original C1 clique. Step 5 helps to detect such situations early.

The partitions shown in Fig. 1 correspond to the following final values of cliques, computed by the
All-Maximal-Clique-Partitions algorithm:

P1 ∶ C1 = {1,2,3}, C2 = ∅, C3 = {4,5,6}, C4 = {7}

P2 ∶ C1 = {1,2,3}, C2 = ∅, C3 = {4,5}, C4 = {6,7}

P3 ∶ C1 = {1,2,3}, C2 = ∅, C3 = {4,6}, C4 = {5,7}

P4 ∶ C1 = {1,2,3}, C2 = ∅, C3 = {4}, C4 = {5,6,7}

P5 ∶ C1 = {1,2}, C2 = {2,4}, C3 = ∅, C4 = {5,6,7}

P6 ∶ C1 = {1,2}, C2 = {3,4}, C3 = ∅, C4 = {5,6,7}

P7 ∶ C1 = {1}, C2 = {2,3,4}, C3 = ∅, C4 = {5,6,7}.

5 Conclusion
We designed and implemented an algorithm to compute all maximal vertex-clique partitions in an undi-
rected graph and used it in the computation of proximity-based least general generalizations. The next
steps are to study the properties of both algorithms in detail and to implement the one for anti-unification.
A more remote goal is to study applicability of proximity-based anti-unification in program analysis and
clone detection.
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1 Introduction

Topological logics (TLs) are formalisms for reasoning about topological relations (contact, con-
nectedness, etc) between regions [5, 13, 14, 15]. Their languages are obtained from the language
of Boolean algebras by the addition of predicates representing these relations. Interpreted over
mereotopological spaces, the formulas of these languages describe configurations of concrete ob-
jects. Recently, the validity problem determined by different classes of mereotopological spaces
has been intensively investigated [8, 9, 10].
In this paper, we introduce a new inference problem for TLs, the unifiability problem, which
extends the validity problem by allowing one to replace variables by terms before testing for
validity. For example, within the context of the mereotopology of all regular closed polygons
of the real plane, the formula C(p, q)→ x 6≡ 0 ∧ x ≤ p ∪ q, read “if p is in contact with q then
x is nonempty and x is contained in p ∪ q”, is not valid but can be made valid after replacing
x either by p ∪ (q ∩ x), or by q ∪ (p ∩ x).
There is a wide variety of situations where unifiability problems arise. Suppose the for-
mula ϕ(p1, . . . , pm) describes a given geographic configuration of constant regions p1, . . . , pm
and the formula ψ(x1, . . . , xn) represents a desirable geographic property of variable regions
x1, . . . , xn. It may happen that ϕ(p1, . . . , pm) → ψ(x1, . . . , xn) is not valid in the considered
geographic environment. Hence, one may ask whether there are n-tuples (a1, . . . , an) of terms
such that ϕ(p1, . . . , pm) → ψ(a1, . . . , an) is valid in this environment. Moreover, one may
be interested to obtain, if possible, the most general n-tuples (a1, . . . , an) of terms such that
ϕ(p1, . . . , pm)→ ψ(a1, . . . , an) is valid.
In this paper, we adapt to the problem of unifiability with constants in TLs (interpreted over the
mereotopology of all regular closed polygons of the real plane) the line of reasoning developed
by Balbiani and Gencer [4] within the simpler context of the problem of unifiability without
constants in Boolean Region Connection Calculus (interpreted over Kripke models). This adap-
tation is far from obvious. Our main result is that, within the context of the mereotopology of
all regular closed polygons of the real plane, unifiable formulas always have finite complete sets
of unifiers.

2 Syntax

Terms Let CON be a countable set of constants (p, q, etc) and V AR be a countable set
of variables (x, y, etc). Let (p1, p2, . . .) be an enumeration of CON without repetitions and
(x1, x2, . . .) be an enumeration of V AR without repetitions. An atom is either a constant, or a
variable. The Boolean terms (a, b, etc) are defined by the rule

• a, b ::= p | x | 0 | a? | (a ∪ b).

The other Boolean constructs for terms (for instance, 1 and ∩) are defined as usual. Read-
ing terms as regions, the constructs 0, ? and ∪ should be regarded as the empty region, the
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complement operation and the union operation. As a result, the constructs 1 and ∩ should be
regarded as the full region and the intersection operation. For all m,n ≥ 0, let TERm,n be
the set of all terms whose constants form a subset of {p1, . . . , pm} and whose variables form a
subset of {x1, . . . , xn}. Let TER be the set of all terms.

Formulas The formulas (ϕ, ψ, etc) are defined by the rule

• ϕ,ψ ::= C(a, b) | a ≡ b | ⊥ | ¬ϕ | (ϕ ∨ ψ).

Here, a and b are terms whereas C is the predicate of contact and ≡ is the predicate of equality.
We use the notation a ≤ b for a ∪ b ≡ b. For C(a, b) and a ≡ b, we propose the readings “a
is in contact with b” and “a is equal to b”. As a result, for a ≤ b, we propose the reading “a
is contained in b”. The other connectives for formulas (for instance, > and ∧) are defined as
usual. A formula is equational iff ≡ is the only predicate possibly occurring in it. Let FOR be
the set of all formulas and FOReq be the set of all equational formulas. Note that FOR and
FOReq are denoted C and B in [8, 9, 10].

3 Semantics

Topological spaces A topological space is a structure of the form (X, τ) where X is a
nonempty set and τ is a set of subsets of X such that the following conditions hold:

• ∅ is in τ ,

• X is in τ ,

• if {Ai : i ∈ I} is a finite subset of τ then
⋂
{Ai : i ∈ I} is in τ ,

• if {Ai : i ∈ I} is a subset of τ then
⋃
{Ai : i ∈ I} is in τ .

The subsets of X in τ are called open sets whereas their complements are called closed sets. In
this paper, we will interest with the topological space (RR2, τRR2), i.e. the real plane RR2 together
with its ordinary topology τRR2 .

Regular closed subsets Let (X, τ) be a topological space. Let Intτ and Clτ denote the
interior operator and the closure operator in (X, τ). A subset A of X is regular closed iff
Clτ (Intτ (A)) = A. Regular closed subsets of X will also be called regions. It is well-
known that the set RC(X, τ) of all regular closed subsets of X forms a Boolean algebra
(RC(X, τ), 0X , ?X ,∪X) where for all A,B ∈ RC(X, τ):

• 0X = ∅,

• A?X = Clτ (X \A),

• A ∪X B = A ∪B.

As a result, for all A,B ∈ RC(X, τ), 1X = X and A ∩X B = Clτ (Intτ (A ∩ B)). Since regions
are regular closed subsets of X, therefore two regions are in contact iff they have a nonempty
intersection. For this reason, we define the relation C(X,τ) on RC(X, τ) by

• C(X,τ)(A,B) iff A ∩B 6= ∅.

The following conditions hold for all A,B,A′, B′ ∈ RC(X, τ):

2
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• if C(X,τ)(A,B) and A ⊆ A′ then C(X,τ)(A′, B),

• if C(X,τ)(A,B) and B ⊆ B′ then C(X,τ)(A,B′),

• if C(X,τ)(A ∪A′, B) then either C(X,τ)(A,B), or C(X,τ)(A′, B),

• if C(X,τ)(A,B ∪B′) then either C(X,τ)(A,B), or C(X,τ)(A,B′),

• if C(X,τ)(A,B) then A 6= ∅ and B 6= ∅,

• if A 6= ∅ then C(X,τ)(A,A),

• if C(X,τ)(A,B) then C(X,τ)(B,A).

Mereotopologies Let (X, τ) be a topological space. A mereotopology over (X, τ) is a Boolean
subalgebra M of RC(X, τ) such that for all P ∈ X and for all A ∈ τ , if P ∈ A then there
exists B ∈M such that P ∈ B and B ⊆ A. A mereotopological space over (X, τ) is a structure
(X, τ,M) where M is a mereotopology over (X, τ) [12]. Over the topological space (RR2, τRR2),
several mereotopologies can be considered. One can consider the mereotopology consisting of
the set RC(RR2) of all regular closed subsets of RR2. Nevertheless, as regions are supposed to be
parts of the real plane occupied by concrete objects, it is clear that some of the regular closed
subsets of RR2 cannot count as regions. For this reason, one can consider the more concrete
mereotopology consisting of the set RCS(RR2) of all regular closed semi-algebraic subsets of
RR2, i.e. those regular closed subsets of RR2 definable by a first-order formula in the language
of arithmetic interpreted over RR. The main property of this mereotopology is that any of its
elements is a finite union of semi-algebraic cells, i.e. semi-algebraic subsets of RR2 homeomorphic
to a closed disc. But RCS(RR2) is not the only candidate for a region-based model of space.
A simpler candidate is the mereotopology consisting of the set RCP (RR2) of all regular closed
polygons of RR2, i.e. those regular closed subsets of RR2 definable by a finite union of finite
intersections of closed half-planes. Although this mereotopology may seem overly simple, its
study from the perspective of the unifiability problem will turn out to be relatively interesting.

Models Let (X, τ,M) be a mereotopological space. A valuation on (X, τ,M) is a map asso-
ciating with every atom a regular closed subset of X in M . Given a valuation V on (X, τ,M),
we define:

• V̄(p) = V(p),

• V̄(x) = V(x),

• V̄(0) = ∅,

• V̄(a?) = Clτ (X \ V̄(a)),

• V̄(a ∪ b) = V̄(a) ∪ V̄(b).

As a result, V̄(1) = X and V̄(a ∩ b) = Clτ (Intτ (V̄(a) ∩ V̄(b))). Thus, V interprets every term
as a regular closed subset of X in M . A model on (X, τ,M) is a structure M = (X, τ,M,V)
where V is a valuation on (X, τ,M). The connectives ⊥, ¬ and ∨ being classically interpreted,
the satisfiability of ϕ ∈ FOR in M (in symbols M |= ϕ) is defined as follows:

• M |= C(a, b) iff C(X,τ)(V̄(a), V̄(b)),

• M |= a ≡ b iff V̄(a) = V̄(b).

As a result, M |= a ≤ b iff V̄(a) ⊆ V̄(b).

3
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Validity Let (X, τ,M) be a mereotopological space. A formula ϕ is valid in (X, τ,M) iff for
all valuations V on (X, τ,M), (X, τ,M,V) |= ϕ. Let C be a class of mereotopological spaces. A
formula ϕ is C-valid iff for all mereotopological spaces (X, τ,M) in C, ϕ is valid in (X, τ,M).
The C-validity problem consists in determining whether a given formula is C-valid. In this paper,
we will be interested in the polygon-based mereotopological space (RR2, τRR2 , RCP (RR2)) over

(RR2, τRR2). As a result, when we write “valid”, we mean “valid in the mereotopological space

(RR2, τRR2 , RCP (RR2))”.

Proposition 1. For all ϕ ∈ FOReq, the following are equivalent: (1) ϕ is valid; (2) for all
finite Boolean algebras B and for all valuations VB on B, (B,VB) |= ϕ; (3) for all Boolean
algebras B and for all valuations VB on B, (B,VB) |= ϕ.

4 Unification

Substitutions A substitution is a function σ : V AR −→ TER which moves at most finitely
many variables. The domain of a substitution σ (in symbols dom(σ)) is the set of variables σ
moves. Given a substitution σ, let σ̄ : TER ∪ FOR −→ TER ∪ FOR be the endomorphism
such that for all variables x, σ̄(x) = σ(x). The composition of the substitutions σ and τ is the
substitution σ ◦ τ such that for all x ∈ V AR, (σ ◦ τ)(x) = τ̄(σ(x)). For all m,n ≥ 0, let Σm,n
be the set of all substitutions σ such that dom(σ) ⊆ {x1, . . . , xn} and for all positive integers
i ≤ n, σ(xi) is in TERm,n. A substitution σ is equivalent to a substitution τ (in symbols
σ ' τ) iff for all variables x, σ(x) ≡ τ(x) is valid. Obviously, ' is reflexive, symmetric and
transitive on the set of all substitutions. A substitution σ is more general than a substitution τ
(in symbols σ � τ) iff there exists a substitution υ such that σ ◦υ ' τ . Obviously, � is reflexive
and transitive on the set of all substitutions. Moreover, it contains '. A set of substitutions is
small iff it contains finitely many non-pairwise equivalent substitutions modulo '.

Proposition 2. For all m,n ≥ 0, Σm,n is small.

Unifiable formulas A formula ϕ is unifiable iff there exists a substitution σ such that σ̄(ϕ)
is valid. In that case, we say that σ is a unifier of ϕ. The unifiability problem (in symbols
UNIF) consists in determining whether a given formula is unifiable [3]. A set of unifiers of
ϕ ∈ FOR is complete iff for all unifiers σ of ϕ, there exists a unifier τ of ϕ in that set such that
τ � σ. An important question in unification theory is [6]: when a formula is unifiable, has it a
minimal complete set of unifiers? When the answer is “yes”, how large is this set?

Unification types A unifiable formula ϕ is finitary iff there exists a finite complete set of
unifiers of ϕ but there exists no with cardinality 1. A unifiable formula ϕ is unitary iff there
exists a unifier σ of ϕ such that for all unifiers τ of ϕ, σ � τ . In that case, we say that σ is a
most general unifier of ϕ.

Proposition 3. For all unifiable ϕ ∈ FOR, the following are equivalent: (1) ϕ is either
finitary, or unitary; (2) there exists a small set Σ of substitutions such that for all unifiers σ
of ϕ, there exists a unifier τ of ϕ in Σ such that τ � σ.

Proposition 4. Let ϕ ∈ FOR, n ≥ 2 and σ1, . . . , σn be substitutions. If the following hold
then ϕ is finitary: (1) for all positive integers i ≤ n, σi is a unifier of ϕ; (2) for all positive
integers i, j ≤ n, if i 6= j then σi 6� σj; (3) σ1, . . . , σn form a complete set of unifiers of ϕ.

For all a in TER, when we write “a0”, we mean “a?” and when we write “a1”, we mean “a”.

4
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5 Examples

For some formulas, if they are unifiable then they are finitary. Luckily, in many cases, this can
be easily proved. For example, let us consider the formula

ϕ01 := x ≡ 0 ∨ x ≡ 1.

Let σ0 and σ1 be the substitutions such that σ0(x) = 0, σ1(x) = 1 and for all variables y, if
x 6= y then σ0(y) = y and σ1(y) = y.

Proposition 5. • σ0 and σ1 are unifiers of ϕ01,

• neither σ0 � σ1, nor σ1 � σ0,

• σ0 and σ1 form a complete set of unifiers of ϕ01,

• ϕ01 is finitary.

Unfortunately, there are unifiable formulas for which the proof that they are finitary can be
more involved. For example, let us consider the formula

ϕpq := C(p, q)→ x 6≡ 0 ∧ x ≤ p ∪ q.

Let σp and σq be the substitutions such that σp(x) = p∪ (q ∩ x), σq(x) = q ∪ (p∩ x) and for all
variables y, if x 6= y then σp(y) = y and σq(y) = y.

Proposition 6. • σp and σq are unifiers of ϕpq,

• if p 6= q then neither σp � σq, nor σq � σp,

• if p 6= q then σp and σq form a complete set of unifiers of ϕpq,

• if p 6= q then ϕpq is finitary.

6 Monomials

The purpose of this section is to introduce definitions and properties about terms. These
definitions and properties are purely Boolean. They will be used later in Sections 7 and 8.
From now on, when we write “CPL”, we mean “Classical Propositional Logic”. Let k,m, n ≥ 0
be such that n ≤ k. An m-vector is a map ~s associating with every positive integer i ≤ m an
element ~s(i) of {0, 1}. A (k,m, n)-correspondence is a map f associating with every m-vector ~s a

surjective function f~s : {0, 1}k −→ {0, 1}n. An n-monomial is a term of the form xβ1

1 ∩ . . .∩xβn
n

where (β1, . . . , βn) ∈ {0, 1}n. For all m-vectors ~s, considering a term a in TERm,n as a formula

in CPL, let mon~s(n, a) be the set of all n-monomials xβ1

1 ∩ . . .∩xβn
n such that a is a tautological

consequence of p
~s(1)
1 ∩ . . . ∩ p~s(m)

m ∩ xβ1

1 ∩ . . . ∩ xβn
n .

Proposition 7. Let a ∈ TERm,n. Considered as formulas in CPL, the terms a and
⋃
{p~s(1)1 ∩

. . .∩p~s(m)
m ∩xα1

1 ∩ . . .∩xαn
n : ~s is an m-vector and xα1

1 ∩ . . .∩xαn
n ∈ mon~s(n, a)} are equivalent.

For all positive integers i ≤ n, let πi : {0, 1}n −→ {0, 1} be the function such that for all
(β1, . . . , βn) ∈ {0, 1}n, πi(β1, . . . , βn) = βi. Let f be a (k,m, n)-correspondence. For all m-
vectors ~s, for all (β1, . . . , βn) ∈ {0, 1}n and for all positive integers i ≤ n, let f−1~s (β1, . . . , βn) be
the set of all (α1, . . . , αk) ∈ {0, 1}k such that f~s(α1, . . . , αk) = (β1, . . . , βn), ∆~s,i be the set of all
(α1, . . . , αk) ∈ {0, 1}k such that πi(f~s(α1, . . . , αk)) = 1 and c~s,i be the term

⋃
{xα1

1 ∩ . . .∩ x
αk

k :
(α1, . . . , αk) ∈ ∆~s,i}. Remark that ∆~s,i and c~s,i depend on f — more precisely, on f~s — too.

5
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Proposition 8. For all m-vectors ~s and for all (β1, . . . , βn) ∈ {0, 1}n, considered as formulas

in CPL, the terms
⋃
{xα1

1 ∩ . . .∩x
αk

k : (α1, . . . , αk) ∈ f−1~s (β1, . . . , βn)} and cβ1

~s,1 ∩ . . .∩ c
βn

~s,n are
equivalent.

7 Tuples of terms

Let k,m, n ≥ 0 be such that n ≤ k. Let (a1, . . . , an) ∈ TERnm,k. For all m-vectors ~s, we define

on {0, 1}k the equivalence relation ∼k,~s(a1,...,an)
by (α1, . . . , αk) ∼k,~s(a1,...,an)

(α′1, . . . , α
′
k) iff for all

positive integers i ≤ n, xα1
1 ∩ . . . ∩ x

αk

k ∈ mon~s(k, ai) iff x
α′

1
1 ∩ . . . ∩ x

α′
k

k ∈ mon~s(k, ai).

Proposition 9. For all m-vectors ~s, ∼k,~s(a1,...,an)
has at most 2n equivalence classes on {0, 1}k.

Proposition 10. There exists a (k,m, n)-correspondence f such that for all m-vectors ~s
and for all (α1, . . . , αk), (α′1, . . . , α

′
k) ∈ {0, 1}k, if f~s(α1, . . . , αk) = f~s(α

′
1, . . . , α

′
k) then

(α1, . . . , αk) ∼k,~s(a1,...,an)
(α′1, . . . , α

′
k).

A (k,m, n)-correspondence f is balanced iff for all m-vectors ~s and for all (α1, . . . , αk), (α′1, . . . ,

α′k) ∈ {0, 1}k, if f~s(α1, . . . , αk) = f~s(α
′
1, . . . , α

′
k) then (α1, . . . , αk) ∼k,~s(a1,...,an)

(α′1, . . . , α
′
k). By

Proposition 10, let f be a balanced (k,m, n)-correspondence. For all m-vectors ~s, by means
of f — more precisely, of f~s —, we define the n-tuple (b~s,1, . . . , b~s,n) of terms by setting for

all positive integers i ≤ n, b~s,i =
⋃
{xβ1

1 ∩ . . . ∩ xβn
n : xα1

1 ∩ . . . ∩ x
αk

k ∈ mon~s(k, ai) and
f~s(α1, . . . , αk) = (β1, . . . , βn)}. An n-tuple (b1, . . . , bn) ∈ TERnm,n of terms is properly obtained

from (a1, . . . , an) iff for all positive integers i ≤ n, bi =
⋃
{p~s(1)1 ∩ . . . ∩ p~s(m)

m ∩ b~s,i : ~s is an
m-vector}. For all m-vectors ~s, for all (β1, . . . , βn) ∈ {0, 1}n and for all positive integers i ≤ n,
let f−1~s (β1, . . . , βn), ∆~s,i and c~s,i be as in Section 6. A substitution υ is properly obtained from
(a1, . . . , an) iff for all variables y, if y 6∈ {x1, . . . , xn} then υ(y) = y and for all positive integers

i ≤ n, υ(xi) =
⋃
{p~s(1)1 ∩ . . . ∩ p~s(m)

m ∩ c~s,i : ~s is an m-vector}.

Proposition 11. Let (b1, . . . , bn) ∈ TERnm,n and υ be a substitution. If (b1, . . . , bn) and υ are
properly obtained from (a1, . . . , an) then for all positive integers i ≤ n, considered as formulas
in CPL, the terms ai and ῡ(bi) are equivalent.

Proposition 12. Let σ be the substitution such that for all variables y, if y 6∈ {x1, . . . , xn}
then σ(y) = y and for all positive integers i ≤ n, σ(xi) = ai. Let (b1, . . . , bn) ∈ TERnm,n and
τ be the substitution such that for all variables y, if y 6∈ {x1, . . . , xn} then τ(y) = y and for all
positive integers i ≤ n, τ(xi) = bi. Let υ be a substitution. If (b1, . . . , bn) and υ are properly
obtained from (a1, . . . , an) then τ ◦ υ ' σ.

Proposition 13. Let (b1, . . . , bn) ∈ TERnm,n. If (b1, . . . , bn) is properly obtained from

(a1, . . . , an) then for all valuations V on RCP (RR2), there exists a valuation V ′ on RCP (RR2)
such that for all positive integers i ≤ n, V̄(bi) = V̄ ′(ai).

Proposition 14. Let σ be the substitution such that for all variables y, if y 6∈ {x1, . . . , xn}
then σ(y) = y and for all positive integers i ≤ n, σ(xi) = ai. Let ϕ ∈ FOR. Let (b1, . . . , bn) ∈
TERnm,n and τ be the substitution such that for all variables y, if y 6∈ {x1, . . . , xn} then τ(y) =
y and for all positive integers i ≤ n, τ(xi) = bi. If (b1, . . . , bn) is properly obtained from
(a1, . . . , an) then σ is a unifier of ϕ only if τ is a unifier of ϕ.

6
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8 Unification type

Now, we are ready to prove the main results of this paper.

Proposition 15. Let ϕ ∈ FOR. Let m,n ≥ 0 be such that ϕ’s constants form a subset of
{p1, . . . , pm} and ϕ’s variables form a subset of {x1, . . . , xn}. For all unifiers σ of ϕ, there
exists a unifier τ of ϕ in Σm,n such that τ � σ.

Proof. Let σ be a unifier of ϕ. Let σ′ be the substitution defined by σ′(xi) = σ(xi) for all
i = 1 . . . n and σ′(y) = y for all y not in {x1, . . . , xn}. Obviously, σ′ is a unifier of ϕ too.
Now, it may happen that for some i ∈ {1, . . . , n}, σ′(xi) contains extra constants which do not
appear in ϕ. If it is, then let q1, . . . , ql be the list of these extra constants. Take new variables
z1, . . . , zl and define σ′′ by uniformly replacing in σ′(x1), . . . , σ′(xn) each occurrence of q1, . . . , ql
by, respectively, z1, . . . , zl. Obviously, σ′′ is a unifier of ϕ too. As a result, for all constants q,
if q 6∈ {p1, . . . , pm} then for all positive integers i ≤ n, q does not occur in σ′′(xi) and for all
variables y, if y 6∈ {x1, . . . , xn} then σ′′(y) = y. Let k ≥ 0 and (a1, . . . , an) ∈ TERnm,k be such

that n ≤ k and for all positive integers i ≤ n, σ′′(xi) = ai. For all m-vectors ~s, let ∼k,~s(a1,...,an)

be as in Section 7. By Proposition 10, let f be a balanced (k,m, n)-correspondence. For all
m-vectors ~s, for all (β1, . . . , βn) ∈ {0, 1}n and for all positive integers i ≤ n, let f−1~s (β1, . . . , βn),
∆~s,i and c~s,i be as in Section 6. Let (b1, . . . , bn) ∈ TERnm,n be an n-tuple of terms properly
obtained from (a1, . . . , an). Let τ be the substitution such that for all variables y, if y 6∈
{x1, . . . , xn} then τ(y) = y and for all positive integers i ≤ n, τ(xi) = bi. Remark that τ is
in Σm,n. Moreover, by Proposition 14, τ is a unifier of ϕ. Let υ be a substitution properly
obtained from (a1, . . . , an). By Proposition 12, τ ◦υ ' σ′′. Hence, τ � σ′′. By the construction
of τ , one can deduce that τ � σ.

Proposition 16. Let ϕ ∈ FOR. If ϕ is unifiable then ϕ is either finitary, or unitary.

Proof. By Propositions 2, 3 and 15.

Proposition 17. UNIF is in EXPSPACE.

Proof. Let ϕ ∈ FOR. Let m,n ≥ 0 be such that ϕ’s constants form a subset of {p1, . . . , pm} and
ϕ’s variables form a subset of {x1, . . . , xn}. By Proposition 15, the reader may easily verify that
ϕ is unifiable iff there exists a unifier σ of ϕ in Σm,n. Each σ in Σm,n is completely described by
the terms σ(xi) ∈ TERm,n, i ranging over {1, . . . , n}. Hence, by Proposition 7, each σ in Σm,n is

completely described by the disjunctions of conjunctions
⋃
{p~s(1)1 ∩. . .∩p~s(m)

m ∩xα1
1 ∩. . .∩xαn

n : ~s
is an m-vector and xα1

1 ∩ . . .∩xαn
n ∈ mon~s(n, σ(xi))}, i ranging over {1, . . . , n}. Obviously, the

size of these disjunctions of conjunctions is at most exponential in m + n. Since the validity
problem is in PSPACE [Kontchakov et al. (2008), Kontchakov et al. (2010), Kontchakov et
al. (2014)], therefore UNIF is in EXPSPACE.

9 Conclusion

In this paper, we have adapted to the problem of unifiability with constants in TLs the line
of reasoning developed by Balbiani and Gencer [4] within the simpler context of the problem
of unifiability without constants in Boolean Region Connection Calculus. Much remains to be
done. Firstly, about the choice of the mereotopological space RCP (RR2). It remains to see
whether the line of reasoning developed in this paper will still apply to RC(RR2) and RCS(RR2).
What happens if we consider mereotopological spaces over the topological spaces (RRn, τRRn),
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i.e. the real space RRn of dimension n together with its ordinary topology τRRn , when n ≥ 3?
Secondly, about the computability of the unifiability problem in TLs. By Proposition 17, this
problem is decidable. Nevertheless, its exact complexity is still unknown. In this respect, we
believe that arguments developed in [1] could be used. Thirdly, about adding to the language the
predicate of connectedness or the predicate of internal connectedness considered in [8, 9, 10].
The line of reasoning developed in this paper up to Proposition 16 will still apply to these
extended languages. Nevertheless, in that case, as proved in [8, 9, 10], the validity problem
becomes undecidable.
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Abstract

We consider rewriting, critical pairs and confluence tests on rewrite rules using nominal
notation. Computing critical pairs is done using nominal unification, and rewriting using
nominal matching. The progress is that we permit atom variables in the notation and
in the unification algorithm, which generalizes previous approaches using usual nominal
unification

Keywords: nominal unification, atom variables, nominal rewriting, Knuth-Bendix criterion,

1 Introduction

The goal of this paper is to demonstrate the expressive power of nominal unification with
atom variables [14] also in applications, where we consider rewriting and critical pairs ala
Knuth-Bendix [7] in a higher-order language with alpha-equivalence and nominal modeling,
where in the nominal unification algorithm also atom-variables are permitted in addition to
expression-variables and where the rewriting is done using a corresponding form of nominal
matching with atom variables. This generalizes the approach in [5, 2]. The application of
nominal unification with atom variables avoids guessing of (dis-)equality of atom, which is
necessary not only as a pre-procedure by the previous uses of nominal unification in rewriting,
but also in rewriting sequences in every single rewriting step.

Nominal techniques [10, 9] support machine-oriented reasoning on the syntactic level for
higher-order languages and support alpha-equivalence. An algorithm for nominal unification was
first described in [17], which outputs unique most general unifiers. More efficient algorithms are
given in [3, 8], also exhibiting a quadratic algorithm. The approach is also used in higher-order
logic programming [4] and in automated theorem provers like nominal Isabelle [15, 16]. Nominal
unification was generalized to permit also atom variables [14] where also in the generalization,
unique most general unifiers are computed, while the decision problem is NP-complete.

As an extended example, illustrating also the ideas and potentials of the nominal modelling
and unification in rewriting, in particular with atom variables, we consider the monad laws
[18]. An informal explanation is that monads are an implementation of sequential actions, as
extension of lambda calculus, where a1 >>= a2 means a sequential combination of actions: a1 is
executed before a2, and the return-value v of a1 is used in the next action, written in lambda
notation as (a2 v). Besides the operational behavior, there is a set of monad laws, describing the
desired behavior of monadic combination as an equational theory (see below). Hamana[6] used
second-order unification to show confluence. However, second-order unification is undecidable,
and thus the extension of this idea will in general lead to undecidable algorithmic questions.
Thus, we use (decidable) nominal unification with atom-variables to obtain the same result,
however, for a finer notion of unification and of equivalence.
We will use the following encoding: return is a function symbol of arity 0, app >>= are function
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symbols of arity 2, where we write >>= as infix, and app as juxtaposition. A,B,C denote
atom-variables, and other upper-case letters expression-variables.

The three monad laws are encoded as follows:

(Idl) ∅ ` (return X) >>= F → F X
(Idr) ∅ `M >>= return → M
(A) A#F,G ` (M >>=F ) >>=G → M >>= (λA.(F A) >>= G)

Additionally we add η-reduction and as a very weak version of β-reduction, we add Bβ. Note
that Bβ is a consequence of the monad laws as equations (w.r.t. α-equivalence), see Fig. 1.

(η) A#F ` (λA.F A) → F
(Bβ) A#F,G ` (λA.(F A) >>=G) X → (F X) >>= G

Note that the combined rewriting system is terminating, which is a prerequisite for applying
the technique of local confluence for showing confluence of rewrite system.

Our rewrite system is higher-order, but we only use nominal unification for computing the
critical pairs and nominal matching for rewriting, where we permit atom variables in every case.

There are the following critical pairs, using nominal unification with atom variables:

1. (Bβ) in (η).

2. (Idl) in (Bβ).

3. (Idl) equal to Idr.

4. (Idl) in A.

5. (Idr) in (Bβ).

6. (Idr) in A.

7. A in A

The critical pairs (2), (3), and (5) are trivial or easily joinable. The remaining ones are
treated separately (see Fig. 1). The pair arising from the overlap of the associativity rule
with itself needs a check if two freshness environment-expression pairs are equivalent (which
indeed they are), which is done comparing the set of ground instances, respecting the freshness
constraints.

The next example, also motivating the use of atom-variables, is a rule in the concur-
rent calculus CHF [12]. It permits rewriting let y = c x1 . . . xn in C[y] → let y =
c x1 . . . xn in C[c x1 . . . xn], and can be applied to C1[let z = c y1 . . . yn in C2[z]] even if
the yi are not pairwise different variables, which is in contrast to usual nominal rewriting using
atoms instead of atom variables, since a unique unifier covers all possibilities of equal/unequal
atoms.

2 Nominal Rewriting

We first introduce some notation [14].
Let F be a set of function symbols f ∈ F , s.t. each f has a fixed arity ar(f) ≥ 0. Let At be

the set of atoms ranged over by a, b, c. The ground language NLa is defined by the grammar:

e ::= a | (f e1 . . . ear(f)) | λa.e

2
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(1)

A#F,G
C#(λA.(F A) >>=G) X

(λC.(λA.(F A) >>=G) X) C
η

//

Bβ

��

(λA.(F A) >>=G) X

Bβ

��
λC.((F X) >>=G) C

η // ((F X) >>=G)

(4)

A#F,G
(return X >>=F ) >>=G

Idl
��

A // return X >>= (λA.F A >>=G)

Idl
��

F X >>=G (λA.F A >>=G) X
Bβ

oo

(6)

A#G
(M >>= return) >>=G

Idr

��

A // M >>= (λA.return A >>=G)

Idl
��

M >>=G oo
η

M >>=λA.G A

(7)

A#F,G
A′#G,G′

((M >>=F ) >>=G) >>=G′

A

��

A // ((M >>= (λA.F A >>=G)) >>=G′

A

��

(M >>=F ) >>= (λA′.G A′ >>=G′)

A

��

B#λA.F A >>=G
B#G′

M >>= (λB.((λA.F A >>=G) B >>=G′))

Bβ

��
M >>= (λB.(F B >>=G) >>=G′)

A

��
B′#F

B′#λA′.G A′ >>=G′

M >>= (λB′.F B′ >>= (λA′.G A′ >>=G′))

ooα−inst // C#G,G′

M >>= (λB.F B >>= (λC.G C >>=G′))

Figure 1: Joining the nontrivial critical pairs of Monad Theory

where λ is a binder for atoms. The basic constraint a#e is valid if a is not free in e and a set of
constraints ∇ is valid if all constraints are valid.

We will use the following definition of α-equivalence on NLa:

Definition 2.1. Syntactic α-equivalence ∼ in NLa is inductively defined:

a ∼ a
∀i : ei ∼ e′i

(f e1 . . . ear(f)) ∼ (f e′1 . . . e
′
ar(f))

e ∼ e′

λa.e ∼ λa.e′
a#e′ ∧ e ∼ (a b)·e′

λa.e ∼ λb.e′

3
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Note that ∼ is identical to the equivalence relation generated by α-equivalence by renaming
binders, which can be proved in a simple way by arguing on the (binding-)structure of expressions
(using deBruijn-indices) and hence ∼ is an equivalence relation on NLa. It is also a congruence
on NLa, i.e., for a context C, we have e1 ∼ e2 implies C[e1] ∼ C[e2].

Let S be a set of expression-variables ranged over by S, T and let A be the set of atom-
variables ranged over by A,B. The grammar of the nominal language NLAS with atom-variables
is:

e ::= A | S | π·A | π·S | (f e1 . . . ear(f)) | λπ·A.e
π ::= ∅ | ((π·A) (π′·A′)) · π′′

where π is a permutation and ∅ denotes the identity. Note that we permit nested permutations.
The expression ((π·A) (π′·A′)) is a single nested swapping. We assume that permutation appli-
cation is done as simplification if possible. The inverse π−1 of a permutation π = sw1· . . . ·swn

with swappings sw i is the expression swn· . . . ·sw1.
AtVar(e) are the atom-variables contained in e, ExVar(e) the expression-variables contained in
e and Var(e) = AtVar(e) ∪ ExVar(e).

The ground language of NLAS is NLa, i.e. a ground substitution replaces atom variables by
atoms and expression variables by expression in NLa.
A freshness constraint ∇ is a set (a Boolean conjunction) of constraints of the form A#e. Note
that constraints of the form π·A#e are equivalent to A#π−1·e, hence we omit them from the
syntax. ∇ is valid under a ground substitution γ, if ∇γ is valid; this is written as: γ |= ∇.

Definition 2.2. A rewrite rule is of the form (∇, l→ r), where ∇ is a freshness constraint and
l, r are expressions of NLAS and l is not an atom- nor an expression-variable, and ExVar(r) ⊆
ExVar(l). The rewrite rule is also written as ∇ ` l→ r.

We will illustrate the ideas for rewriting by two examples.

Example 2.3. Let the rewrite rule (for garbage collection) be ({A#S′}, let A = S in S′ → S′).
Then a rewrite step on the ground expression (let x = a in λb.b) without any atom- nor
expression-variables can be done as follows: We have to compute a nominal matcher of
(let A = S in S′) � (let x = a in λb.b), which results in a substitution σ = {A 7→ x;S 7→
a;S′ 7→ λb.b} and the resulting freshness constraint (A#S′)σ is valid, since x#λb.b is valid.
The resulting expression of the rewriting step is λb.b.

This form of application appears to be too restricted, since we also want to rewrite expressions
containing atom- and expression-variables, perhaps restricted by freshness constraints. In doing
so we gain the ability to rewrite a multitude of related ground expressions (all instances of the
expression-constraint pair) and are able to join critical pairs. We generalize the example and
permit atom- and expression-variables in the target expression.

Example 2.4. We use the same rewrite rule as above: ({A#S′}, let A = S in S′ → S′).
Then let the abstract expression be (let B = S3 in S4) with the additional freshness constraint
B#S4, which represents a set of ground expressions. Rewriting can informally be done as follows:
we have to compute a matcher of (let A = S in S′) � (let B = S3 in S4). This is done by
treating B,S3 and S4 like constants. The freshness constraint B#S4 is interpreted as a part of
the description of the input.

The matching substitution is σ = {A 7→ B;S 7→ S3;S′ 7→ S4}. The freshness constraint
{A#S′} of the rule is instantiated to {B#S4}, which is identical to the input constraint. Thus
the result of rewriting is (S4, {B#S4}).

4
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(M1)
(Γ ·∪{e � e},∇, θ)

(Γ,∇, θ)
(M2)

(Γ ·∪{π · S � e},∇, θ)
(Γ ·∪{S � π−1 · e},∇, θ)

(M3)
(Γ ·∪{S � e},∇, θ)

(Γ[e/S],∇[e/S], θ ∪ {S 7→ e})
(M4)

(Γ ·∪{π1·A � π2·B},∇, θ)
(Γ,∇∪ {A =# π−11 ·π2·B}, θ)

(M5)
(Γ ·∪{(f e1 . . . ear(f)) � (f e′1 . . . e

′
ar(f))},∇, θ)

(Γ ·∪{e1 � e′1, . . . , ear(f) � e′ar(f)},∇, θ)

(M6)
(Γ ·∪{λπ1·A1.e1 � λπ2·A2.e2},∇, θ)

(Γ ·∪{e1 � ((π1·A1) (π2·A2))·e2},∇∪ {(A1#π−11 ·(λπ2·A2.e2))}, θ)

Figure 2: Rules of NomMatchAS

2.1 Nominal Match

The goal of matching (in a first approximation) is to find out for given expressions e, e′ whether
there is a substitution θ such that eθ represents e′. Below we will use (∆, e′) as targets, i.e.,
expressions e′ that are restricted by a freshness constraint ∆. The semantics of a pair (∆, s) is
a set of ground expressions: {sσ | sσ is ground,∆σ is valid}.

The basic components of a freshness constraint ∇ are single constraints A#e. Certain basic
constraints can be written in different notation or more explicitly: (i) A1 =# π·A2 means
equality and abbreviates A1#λ(π·A2).A1; (ii) A1 6=# π·A2 means disequality and is another way
to write A1#π·A2; and (iii) A1#λπ·A2.e could be written as a disjunction (A1 =# π·A2∨A1#e)
(but we will not do this explicitely).

The rules for computing a match e � e′ (ignoring the ∆-constraints) in NLAS are in Fig. 2.
The rules operate on a triple (Γ,∇, θ) of a set of match-equations Γ, freshness constraints ∇
and a substitution θ.

Definition 2.5. A matcher for a matching problem (∆, e) � (∆′, e′) is a tuple (∇, θ) such that:

• ∇ � eθ ∼ e′, i.e. ∀γ : ∇γ is valid and eγ, e′γ ground =⇒ eσγ ∼ e′γ

• For every ground substitution γ with domain AtVar(∆′), such that γ |= ∆′, there is an
extension γ′ of γ, such that γ′ |= ∇∪∆σ. This means the following formula must hold:
∀B.∃A.(∆′ =⇒ ∇∪∆σ), where B = Var(∆′, e′) and A = Var(∇∪∆σ) \ B

Let FA(.) denote the free atom variables in a constraint or an expression.

Definition 2.6. Let the input of NomMatchAS be (∆, e) and (∆′, e′), where FA(∆′) ⊆ FA(e′)
must hold,
The matching algorithm NomMatchAS starts with Γ = ({e � e′},∆, ∅). Then it performs the
rules in Fig. 2 until the triple is (∅,∇, θ), i.e. Γ is empty.
If the process gets stuck, then there is no match.
If Γ is empty, then the second matching condition needs to be tested, i.e. the formula
∀B.∃A.(∆′ =⇒ ∇), where B = Var(∆′, e′) and A = Var(∇) \ B, must hold.

The condition ∀B.∃A.(∆′ =⇒ ∇) can be made algorithmic by only looking for equivalence
relations on B (that may be induced by the substitutions γ). I.e. for every equivalence relation ∼

5
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on B, let EQ(∼) be the freshness constraint that exactly describes the equations and disequations
(of atom variables) for ∼: Then (∆′ ∪EQ(∼)) =⇒ (∇∪EQ(∼)) must be valid, which can be
checked in polynomial time.

Proposition 2.7. The complexity of the final test of the matching algorithm is in ΠP
2 .

Proof. The quantifiers have the effect of adding an equivalence relation on the atom-variables.
If the constraint ∆ is instantiated with atom variables by a ground substitution σ, then very
single freshness constraint A#e can be decided in polynomial time in the size of the constraint
by simply checking Aσ#eσ.

We are working on determining lower complexity bounds for a single rewriting step. The
same techniques as in [14] permit to show:

Theorem 2.8. NomMatchAS is sound and complete and computes at most one match.

2.2 Rewriting and Overlap

We define nominal rewriting of expression with atom- and expression-variables on targets
(∆, C[s]) where s is the sub-expression that is to be modified and ∆ is a freshness constraint.

Definition 2.9. Let (∇, l→ r) be a rewrite rule and let (∆, C[s]) be the object to be rewritten,
where we assume that Var(∇, l→ r) ∩Var(∆, C[s]) = ∅. (The condition can be achieved by a
renaming of ∇, l→ r.) A rewrite step is defined as follows:

Let (∇′, σ) be a nominal matcher of (∇, l) � (∆, s) computed with NomMatchAS and let
∇′′ = ∇′ ∧∇σ.

Then the result of rewriting is (∆ ∪∇′′, C[rσ]).

Now we define overlap, join and critical pairs and the Knuth Bendix-criterion in our setting.

Definition 2.10. An overlap of two (variable-disjoint) rewrite rules (∇1, l1 → r1) and (∇2, l2 →
r2) is computed by the following algorithm. Select a non-variable position p in l1, represented
by a context C, such that C[l′1] = l1 and the hole of C is at expression-position p. Apply the
unification algorithm in [14] to the equation l′1

.
= l2 and constraint ∇1 ∧ ∇2. If there is an

overlap, then the (unique) result of the unification algorithm is a constraint and a substitution
(∇′, σ), where we assume that Dom(σ) ∩ Var(∇′) = ∅. The resulting overlap expression is
(l1σ,∇′).

The critical pair consists of the corresponding rewriting results: ((r1σ,∇′), (Cσ[r2σ],∇′)).

For the final join, we have to check for the equivalence of targets (∆1, e1) and (∆2, e2). In
general this cannot be done by purely syntactic means. A correct method is to compute whether
these match each other also respecting all the freshness constraints. This test is decidable.

3 Conclusion

Future work is extend the method to equational theories that are defined in more general ways,
for example using descriptions of infinite sets of equations by context variables in rules, and
applying the nominal unification algorithm as described in [13].

A potential application are some reduction rules in the call-by-need calculus of [1] or in CHF
[11, 12], like let y = v in C[y]→ let y = v in C[v], where v is a value, or similar rules.

Further applications are other higher-order theories of data structures like the monad theory.
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Abstract

It is well-known that the unification problem for a binary associative-commutative-
idempotent function symbol with a unit (ACUI -unification) is polynomial for unification
with constants and NP-complete for general unification. We prove that the same is true
if we add a finite set of ground identities. To be more precise, we first show that not
only unification with constants, but also unification with linear constant restrictions is
in P for any extension of ACUI with a finite set of ground identities. Using well-known
combination results for unification algorithms, this then yields an NP-upper bound for
general unification modulo such a theory. The matching lower bound can be shown as in
the case without ground identities.

1 Introduction

As shown by Kapur and Narendran [7], general ACUI -unification is NP-complete, while ele-
mentary unification and unification with free constants is in P. In particular, this also implies
that the word problem in ACUI is decidable in polynomial time. Marché proved in [8] that the
word problem remains decidable if ACUI is extended with a finite set of ground identities, but
no complexity bounds are given. This result actually holds for a signature possibly containing
several ACUI symbols and free function symbols.

We are interested in whether decidability of unification for ACUI is also stable under adding
ground identities. In this paper, we answer this question affirmatively for the case of a single
ACUI symbol. The ground identities may contain this symbol and additional constant symbols,
but no additional function symbols of arity greater than 0. In this setting, we can actually
prove that not only decidability of unification, but also the complexity results transfer. To this
purpose, we show that unification with linear constant restrictions, a notion that generalizes
unification with free constants, is decidable in P. Then, using known combination results by
Baader and Schulz [4], we can conclude that general unification is decidable in NP.

Our interest in ACUI -unification modulo an additional ground theory stems from the fact
that the theory ACUI is a common subtheory of the equational theories corresponding to the
Description Logics FL0 and EL: for FL0, ACUI is extended with unary function symbols
that behave like homomorphisms and for EL the additional unary function symbols behave like
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monotone operators. Unification in FL0 is known to be ExpTime-complete [3] and NP-complete
in EL [2]. However, it is not known how to extend these decidability results to unification in
the presence of so-called general TBoxes, though for EL there are some positive results for a
restricted form of TBoxes [1]. Since, from an equational theory point of view, general TBoxes
correspond to finite sets of ground identities, we are interested in equational theories for which
decidability of unification is stable under adding finite sets of ground identities. We will show
in this paper that ACUI is such a theory.

2 ACUIG-unification with linear constant restriction

We assume in the following that the reader is familiar with basic notions of unification theory,
and in particular the difference between unification with constants, unification with linear con-
stant restriction, and general unification. Detailed definitions and a discussion of this difference
can be found in [5].

Let Σ = {+,0} for a binary function symbol + and a constant symbol 0. We denote the
equational theory that states that + is an associative, commutative, and idempotent symbol
with unit 0 by ACUI . Furthermore, let F be a countably infinite set of constants and V a
countably infinite set of variables. The set of terms built from Σ, F and V is denoted by
TΣ(V, F ), and the set of ground terms, i.e., terms that do not contain variables, by TΣ(F ). If G
is a finite set of ground identities using terms in TΣ(F ), then we denote the equational theory
ACUI ∪ G with ACUIG . The constants from F not occurring in G are called free constants.
For example, if a, b, c ∈ F and x, y ∈ V , then x+ y and a+ x belong to TΣ(V, F ), and a+ b+ b
and b + a + a are elements of TΣ(F ). The latter two terms are actually equivalent modulo
ACUI . If G contains the identity a + b = c, then these terms are also equivalent to a + b + c.
In fact, b+ a+ a =ACUI a+ b+ b =ACUI a+ b =ACUI a+ b+ a+ b =ACUIG a+ b+ c.

A substitution is a mapping σ : V → TΣ(V, F ), which is the identity for all but finitely
many variables. It can be homomorphically extended to a mapping from TΣ(V, F ) to TΣ(V, F )
in the obvious way.

Definition 1 (ACUIG-unification problem with linear constant restriction).

Input: A finite system Γ = {s1 =? t1, . . . , sk =? tk} of equations between terms in TΣ(V, F ), a
finite set of ground identities G = {g1 = h1, . . . , g` = h`} between terms of TΣ(F ), and a linear
order ≺ on X ∪D, where X ⊆ V is the set of variables occurring in Γ and D ⊆ F is the set of
free constants occurring in Γ.

Question: Is there a substitution σ such that σ(si) =ACUIG σ(ti) for every i = 1, . . . , k and
for every x ∈ X and d ∈ D we have that d does not occur in σ(x) if x ≺ d. Such a substitution
is called an ACUIG-unifier of Γ w.r.t. ≺.

Now, let Γ be an ACUIG-unification problem with linear constant restriction ≺, and C =
{a1, . . . , an} be the finite set of constants occurring in Γ and in G, and X = {x1, . . . , xm} the
finite set of variables occurring in Γ. In order to check whether Γ has a unifier w.r.t. ≺ it is
sufficient to consider substitutions that are the identity on V \X and replace every x ∈ X by a
term in TΣ(C), i.e., a ground term containing (in addition to 0) only constants from C. In fact,
any ACUIG-unifier of Γ w.r.t. ≺ can be turned into one satisfying this property by replacing
variables and constants in F \ C with 0. If we apply such a substitution to the terms si, ti
occurring in Γ, then we obtain terms in TΣ(C).

Modulo ACUI , terms in TΣ(C) can be represented as subsets of C. These sets just consist
of the constants occurring in the terms. Two ground terms are equivalent modulo ACUI iff
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the corresponding sets are equal. For this reason, we often assume in the following that ground
terms are represented as such sets. However, in the presence of a set of ground identities G,
different sets may represent terms that are equivalent modulo ACUIG . In our above example,
the terms a + b + b and b + a + a are both represented by the set {a, b}, whereas a + b + c is
represented by {a, b, c}. Intuitively, the identity a+ b = c can be used to add c to the set {a, b}.

We will now show how we can decide whether two sets represent terms that are equivalent
modulo ACUIG . For this purpose we saturate the sets by using the identities in G to add
constants to them, as we have done with c in our example. For each identity gi = hi in G, let
Gi, Hi ⊆ C be the sets corresponding to gi, hi.

Given a set A ⊆ C, its saturation is obtained by iteratively applying the identities of G
as follows: begin with setting A∗ := A; as long as there is an identity gi = hi in G such that
Gi ⊆ A∗ and Hi 6⊆ A∗ (or Hi ⊆ A∗ and Gi 6⊆ A∗), extend A∗ by setting A∗ := A∗ ∪ Hi

(respectively, by setting A∗ := A∗ ∪Gi). This saturation process terminates after a number of
iterations that is bounded by the cardinality of G. In fact, once an identity gi = hi was applied
in the saturation process, it is no longer applicable since the set A∗ then contains Gi ∪Hi. It is
also easy to see that the result of the saturation does not depend on the order in which rules are
applied. Thus, each set A has a unique saturation A∗, which can be computed in polynomial
time.

As an example, consider the set of ground identities

G = {a+ b+ c = d, b+ c+ e = f}

and the term s = a + f . The saturation process for s starts with setting A∗s := As = {a, f}.
For the second identity, we have that Af = {f} ⊆ A∗s, but Ab+c+e = {b, c, e} 6⊆ A∗s. Hence,
we can extend A∗s to A∗s := A∗s ∪ Ab+c+e = {a, b, c, e, f}. Now, for the first identity, we have
that Aa+b+c = {a, b, c} ⊆ A∗s, but Ad = {d} 6⊆ A∗s, and thus we obtain A∗s := A∗s ∪ Ad =
{a, b, c, d, e, f}. This is the final saturated set since it cannot be further extended using the
identities in G.

The following lemma is an easy consequence of the definition of saturation.

Lemma 2. Let A,B ⊆ C. Then the following holds:

A ⊆ A∗, A∗∗ = A∗, A ⊆ B ⇒ A∗ ⊆ B∗, A∗ ∪B∗ ⊆ (A ∪B)∗.

Proposition 3. Let As, At ⊆ C be sets respectively representing the terms s, t ∈ TΣ(C). Then
s =ACUIG t iff A∗s = A∗t . In particular this implies that the word problem for ACUIG is
decidable in polynomial time.

Proof. Decidability in polynomial time obviously follows from the equivalence in the first state-
ment since the saturation A∗ of a set A ⊆ C can be computed in polynomial time.

To show the equivalence, first assume that A∗s = A∗t . To conclude from this that s =ACUIG t,
it is sufficient to show that saturation steps correspond to rewrite steps in ACUIG . Thus,
assume that l ∈ TΣ(C) has the corresponding set Al, and that gi = hi is an identity in G
such that Gi ⊆ Al. Then l is of the form l = gi + l′. We now have l = gi + l′ =ACUIG

gi + gi + l′ =ACUIG hi + l, and the set corresponding to the term hi + l is Al ∪Hi.

Second, assume that A∗s 6= A∗t . To show that this implies s 6=ACUIG t, we construct a
model A of ACUIG in which this identity does not hold. As interpretation domain, we use all
saturated sets, i.e., ∆ := {A∗ | A ⊆ C}. The binary symbol + is interpreted as union followed
by saturation, i.e., A∗+B∗ := (A∗∪B∗)∗, 0 as ∅∗, and c ∈ C as {c}∗. Given a term u ∈ TΣ(C)
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with corresponding set Au, its interpretation in this algebra is A∗u. This can easily be shown
by induction on the structure of u, where the induction step uses the fact that

(A∗ ∪B∗)∗ = (A ∪B)∗, (1)

which is an easy consequence of Lemma 2. Thus, A∗s 6= A∗t implies that the terms s, t have
different interpretations in A. To show s 6=ACUIG t, it is thus sufficient to show that A satisfies
all identities of ACUIG . For the identities in ACUI this is an easy consequence of (1) and the
fact that set union is associative, commutative and idempotent and has ∅ as unit. Now consider
an identity gi = hi ∈ G. When saturating the corresponding sets Gi and Hi, one can in a first
step go both from Gi and from Hi to Gi ∪ Hi (unless this step is void due to an inclusion).
Saturating further, one thus obtains identical saturated sets, which shows that gi and hi are
interpreted in A by the same saturated set.

Continuing our example, recall that the term s = a + f has the saturated set A∗s =
{a, b, c, d, e, f}. It is easy to see that for t = b + d + e saturation produces the sequence
of

At = {b, d, e} → {a, b, c, d, e} → {a, b, c, d, e, f} = A∗t ,

where in the first step the identity d = a + b + c is applied, and in the second the identity
b+ c+ e = f . Thus, we have A∗s = A∗t , which shows that s = a+ f =ACUIG b+ d+ e = t.

Next, we introduce an algorithm that solves ACUIG-unification with linear constant restric-
tion in polynomial time. Intuitively, it starts with a maximal substitution that respects the
linear order ≺. Next, whenever an equation is not satisfied, that is, when an element appears
on one side but not on the other, we trim the substitution, so that it no longer introduces this
violation. Upon termination, the algorithm provides a solution if one exists, or outputs Fail
otherwise. By a slight abuse of notation we assume that the substitutions σ considered in the
algorithm actually map to sets of constants rather than ground terms. In addition, for a term
t ∈ TΣ(X,C) we use σ(t) to denote also the set corresponding to the term σ(t).

Algorithm 1: Computation of unifier

Input: An ACUIG-unification problem with linear constant restriction ≺, as introduced
in Definition 1.

Output: A unifier σ : X → 2C or Fail.
Set σ(x) := {c ∈ C | c ≺ x or c occurs in G} for all x ∈ X
while some equation s =? t in Γ is not satisfied by σ do

if there is a variable x in s such that σ(x) 6⊆ σ(t)∗ or y in t such that σ(y) 6⊆ σ(s)∗

then
Set σ(x) := σ(x) ∩ σ(t)∗ for all variables x in s
Set σ(y) := σ(y) ∩ σ(s)∗ for all variables y in t

else
return Fail

end

end
return σ

Before proving correctness of this algorithm, we give an example that illustrates how it tests
for the existence of an ACUIG-unifier w.r.t. a linear constant restriction. Consider the system
of equations

Γ = {g + x2 =? a+ x1, b+ x1 =? c+ f + g, c+ x2 =? a+ c+ e},
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the set of ground identities

G = {a+ b+ c = d, b+ c+ e = f}

considered in our previous examples, and the linear order

x2 ≺ g ≺ x1.

Note that g is the only free constant occurring in Γ, and thus it is the only constant occurring in
this linear constant restriction. Also note that without g ≺ x1, the second equation of Γ would
not be solvable. In addition, without G this second equation would not be solvable either: b
belongs to the left-hand side, but could never belong to the right-hand side without additional
ground identities.

The algorithm begins by setting

σ(x1) := {a, b, c, d, e, f, g} and σ(x2) := {a, b, c, d, e, f}.

Next, the algorithm enters the while loop and picks in each iteration an equation that is not
satisfied:

• The second equation is not satisfied by σ. In fact, we have that σ(c+f+g)∗ = {b, c, e, f, g},
and hence σ(x1) 6⊆ σ(c+f+g)∗. The algorithm proceeds to set σ(x1) := {a, b, c, d, e, f, g}∩
{b, c, e, f, g} = {b, c, e, f, g}.

• The third equation is not satisfied by σ. We have that σ(a+ c+ e)∗ = {a, c, e}, and hence
σ(x2) 6⊆ σ(a+ c+ e)∗. The algorithm proceeds to set σ(x2) := {a, b, c, d, e, f}∩{a, c, e} =
{a, c, e}.

• The first equation is not satisfied by σ. We have that σ(x1) = {b, c, e, f, g} 6⊆ σ(g+x2)∗ =
{a, c, e, g}. The algorithm proceeds to set σ(x1) := {b, c, e, f, g} ∩ {a, c, e, g} = {c, e, g}.

The algorithm then terminates since all equations are satisfied, and yields the substitution
σ = {x1 7→ c+ e+ g, x2 7→ a+ c+ e} as output.

Proposition 4. Algorithm 1 terminates in polynomial time. If Γ has a unifier, then it provides
a unifier as output, and otherwise it fails.

Proof. Termination in polynomial time is an easy consequence of the fact that in each iteration
of the while-loop, at least one constant is removed from the image of a variable, or the loop is
exited.

Since the algorithm only returns a substitution if the while-loop is exited regularly, this
substitution satisfies all the equations of Γ. It satisfies the linear constant restriction due to
the fact that the original substitution satisfies it and that constants are only removed from, but
never added to, the image of variables during the run of the algorithm. Consequently, if the
algorithm returns a substitution, then this substitution is a unifier of Γ w.r.t. ≺. This shows
that the algorithm must return Fail in case Γ has no unifier w.r.t. ≺.

To prove the completeness of the algorithm, assume that σ̂ is a unifier of Γ, and that the
algorithm terminates during the rth iteration of the while-loop. Let σ(0) be the substitution σ
before the first iteration of the while-loop. For i ∈ {1, . . . , r − 1}, let σ(i) be the substitution
obtained at the end of the ith iteration of the while-loop.

We extend ⊆ to substitutions in a natural way, by using pointwise comparison. We prove
by induction on i that σ̂ ⊆ σ(i), for all i ∈ {0, . . . , r − 1}. Since σ̂ satisfies the linear constant

5



ACUI Unification modulo Ground Theories Baader, Marantidis and Mottet

restriction, we have σ̂ ⊆ σ(0). Let now i ∈ {0, . . . , r − 2}, and assume that we already know
that σ̂ ⊆ σ(i). We must prove σ̂ ⊆ σ(i+1).

Since the algorithm does not exit the while-loop at this stage, there is an equation s =? t
in Γ that is not satisfied by σ(i). In addition, since the algorithm does not fail at iteration i,
there exists a variable x in s such that σ(x) 6⊆ σ(t)∗ or y in t such that σ(y) 6⊆ σ(s)∗. Clearly,
for every x ∈ X that does not appear in this equation, we have σ̂(x) ⊆ σ(i)(x) = σ(i+1)(x). Let
now x be a variable occurring in s (variables in t can be treated analogously). To prove that
σ̂(x) ⊆ σ(i+1)(x), it suffices to prove that σ̂(x) ⊆ σ(i)(x) and that σ̂(x) ⊆ σ(i)(t)∗. The first
statement is true by the induction hypothesis. Now, we have

σ̂(x)
(1)

⊆ σ̂(s)
(2)

⊆ σ̂(s)∗
(3)
= σ̂(t)∗

(4)

⊆ σ(i)(t)∗,

where (1) holds because x occurs in s, (2) by Lemma 2, (3) because σ̂ is a unifier of Γ, and (4)
by Lemma 2 since σ̂ ⊆ σ(i). This finishes the induction proof.

Therefore, we now know that σ̂ ⊆ σ(r−1). There are two possible reasons for the algorithm
terminating in the rth iteration. Either the while-loop is exited regularly or the algorithm
returns Fail. In the first case, σ(r−1) is a unifier and the algorithm returns this substitution.

It remains to show that the second case cannot occur. In this case, we have σ(r−1)(s)∗ 6=
σ(r−1)(t)∗ for some equation s =? t in Γ, but σ(r−1)(x) ⊆ σ(r−1)(t)∗ for all variables x in s and
σ(r−1)(y) ⊆ σ(r−1)(s)∗ for all variables y in t. This can only be the case if there is a constant
c ∈ C such that c occurs in s, but c 6∈ σ(r−1)(t)∗; or c occurs in t, but c 6∈ σ(r−1)(s)∗. We show
that this is impossible.

Thus assume that c occurs in s (the case where c occurs in t can be treated symmetrically).
We have

c
(1)
∈ σ̂(s)

(2)

⊆ σ̂(s)∗
(3)
= σ̂(t)∗

(4)

⊆ σ(r−1)(t)∗,

where (1) holds since c occurs in s, (2) by Lemma 2, (3) since σ̂ is a unifier of Γ, and (4) by
Lemma 2 since σ̂ ⊆ σ(r−1).

The following theorem is an immediate consequence of Proposition 4.

Theorem 5. Let ACUI be the equational theory that states that the binary function symbol
+ is associative, commutative, and idempotent, and has the constant symbol 0 as unit, and let
ACUIG be an extension of ACUI by finitely many ground identities built using +,0, and addi-
tional constant symbols. Then the ACUIG-unification problem with linear constant restrictions
is decidable in polynomial time.

3 General ACUIG-unification

General ACUIG-unification problems differ from the ones we have considered until now in that
the terms used in Γ may contain “free” function symbols, i.e., function symbols not occurring
in the identities of ACUIG . For example, {f(x + a, a + b) =? f(b + y, x)} is such a general
ACUIG-unification problem since it contains the additional function symbol f that does not
occur in the identities of ACUIG .

The following was proved by Baader and Schulz [4] and provides an upper bound for general
ACUIG-unification.

Theorem 6 ([4]). If solvability of Ei-unification problems with linear constant restrictions is
decidable in NP for i = 1, 2, then unifiability in the combined theory E1 ∪ E2 is also decidable
in NP.
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In particular, this implies that, if E-unification with linear constant restriction is decidable
in NP, the same is true for general unification, by choosing as the second theory the empty
theory.

Theorem 7. For every finite set of ground identities G, general ACUIG-unification is NP-
complete.

Proof. Membership in NP is an immediate consequence of Theorem 5 together with Theorem 6.
NP-hardness can be shown by the same reduction from the set-matching problem as used in

[6] to show that general ACI -unification is NP-hard. To be more precise, this reduction yields
ACI -unification problems of the form

Γ = {g(s1) + . . .+ g(sm) =? g(t1) + . . .+ g(tm)},

where + is an associative, commutative, and idempotent function symbol, g is a unary free
function symbol and the terms s1, . . . , sm, t1, . . . , tn contain only free function symbols and
variables. The presence of a unit and of ground identities in ACUIG do not change solvability
of such problems compared to ACI since

• in the top-level sum the additional identities cannot be used due to the fact that all terms
on this level start with the free function symbol g;

• while the variables occurring in the terms g(s1), . . . , g(sm), g(t1), . . . , g(tn) may be re-
placed by terms containing + and constant symbols from G, these “alien” subterms can
be abstracted away by free constants.

This shows that such a problem Γ is solvable modulo ACI iff it is solvable modulo ACUIG ,
which completes our proof of NP-hardness of general ACUIG-unification.

4 Conclusion

We have shown that ACUIG-unification with linear constant restrictions is decidable in P, and
general ACUIG-unification is NP-complete. Note, however, that according to our definition
of ACUIG this result holds for a single ACUI -symbol + and ground identities G built using
only + and free constant symbols. Due to the combination results of Baader and Schulz [4], we
can also deal with several ACUI -symbols +1, . . . ,+n and sets of ground identities G1, . . . , Gn,
where the identities in Gi are built using only +i and free constant symbols not occurring in
any of the other sets Gj (i 6= j). The combination results show that unification in the union of
such theories can be decided in NP. However, this result cannot deal with situations where the
ground identities share constants, or contain several ACUI -symbols, or contain free function
symbols. It is an open problem whether unification in such “mixed” theories remains decidable.
It is only known from Marché’s results [8] that the word problem is decidable in this setting,
and it would be interesting to see whether the same is true for unification.

Motivated by the applications in Description Logics mentioned in the introduction, we also
intend to investigate what effect adding ground identities to extensions of ACUI has on the
unification problem.
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Abstract

We study decision procedures for two knowledge problems critical to the verification
of security protocols, namely the intruder deduction and the static equivalence problems.
These problems can be related to particular forms of context matching and context uni-
fication. Both problems are defined with respect to an equational theory and are known
to be decidable when the equational theory is given by a subterm convergent term rewrite
system. In this note we extend this to consider a subterm convergent equational term
rewrite system defined modulo an equational theory, like Commutativity or Associativity-
Commutativity. We show that for certain classes of such equational theories, namely the
shallow classes, the two knowledge problems remain decidable.

1 Introduction

Verifying the security of protocols requires the development of specific decision procedures to
reason about the knowledge of an intruder. Two important measures of this knowledge are
(intruder) deduction [17, 18] and static equivalence [2]. The deduction problem is the question
of whether an intruder, given his deductive capability and a sequence of messages representing
their knowledge, can obtain some secret. This is a critical measure of the capability of the
protocol to maintain secrets. Deducibility is needed for many questions about the security of
protocols. However, there are some questions for which we need to be able to decide more
than deducibility. For some protocols, in addition to deducibility, we would like to determine
whether an intruder can distinguish between different runs of the protocol. For example, in
protocols which attempt to transmit encrypted votes we would like to know if, to the attacker,
two different votes are indistinguishable. Static equivalence measures this property.

∗This work has received funding from the European Research Council (ERC) under the H2020 research and
innovation program (grant agreement No 645865-SPOOC).
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Much work has gone into investigating and developing decision procedures for the deduction
and the static equivalence problems [2,6,8,10,12]. In this work the security protocols are often
represented by equational theories with the theories of interest usually defined as unions of
several simpler sub-theories. In this paper, we focus on decision procedures for the deduction
problem and the static equivalence problem in equational theories E = E1∪E2 where E1 and E2

are possibly non-disjoint. Until now, the following scenarios have been successfully investigated:
E1 is given by a subterm convergent term rewrite system, and E2 is empty [2]; E1 and E2 are
disjoint [9]; E1 and E2 share only constructors [12]. In this paper, we consider the case where
E1 is given by a term rewrite system which is both subterm and convergent modulo E2. We
then show that the methods of [2] can be extended to subterm convergent rewrite systems for
a significant class of E2 theories.

2 Preliminaries

We assume the reader is familiar with equational unification and term rewrite systems. We
review some critical definitions below but a more complete overview can be found in [5].

A finite convergent term rewrite system (TRS) R is said to be subterm convergent if for any
l → r ∈ R, r is either a strict subterm of l or a ground term. An equational theory is subterm
convergent if it is presented by a subterm convergent TRS.

The size of a term t is denoted by |t| and defined in the usual way as follows: |f(t1, . . . , tn)| =
1+Σni=1|ti| if f is a n-ary function symbol with n ≥ 1, |c| = 1 if c is a constant, and |x| = 0 if x is
a variable. The size of a TRS R is denoted by |R| and defined as follows: |R| = max{l→r∈R} |l|.
Since a variable cannot occur as the left-hand side of any rule in R, we have that |R| ≥ 1 for
any non-empty TRS R. When R is empty, we define |R| = 1.

Equational Theories. Let us introduce the different classes of theories considered in the pa-
per. An equational theory E is finite if for each term t, there are only finitely many terms s such
that t =E s. Matching in finite theories is finitary. A sufficient condition to get a finite theory
is to assume that E is permutative. An equational theory E is permutative if for each axiom
l = r in E, l and r contain the same symbols with the same number of occurrences. Well-known
theories such as Associativity (A), Commutativity (C), and Associativity-Commutativity (AC)
are permutative theories. Unification in permutative theories is undecidable in general [19].

A theory E is syntactic if it has a finite resolvent presentation S, that is a finite set of
equational axioms S such that each equality t =E u has an equational proof t ↔∗S u with at
most one step ↔S applied at the root position. A theory E is shallow if variables can only
occur at a depth at most 1 in axioms of E. Shallow theories are syntactic theories for which
unification is finitary [7]. The theory AC is permutative and syntactic, while C is permutative
and shallow.

Notions of Knowledge. The applied pi calculus and frames are used to model attacker
knowledge [3]. In this model, the set of messages or terms which the attacker knows, and which
could have been obtained from observing one or more protocol sessions, are the set of terms in
Ran(σ) of the frame φ = νñ.σ, where σ is a substitution ranging over ground terms. We also
need to model cryptographic concepts such as nonces, keys, and publicly known values. We do
this by using names, which are essentially free constants. Here also, we need to track the names
which the attacker knows, such as public values, and the names which the attacker does not
know a priori, such as freshly generated nonces. ñ consists of a finite set of restricted names,

2
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these names represent freshly generated names which remain secret from the attacker. The set
of names occurring in a term t is denoted by fn(t).

Definition 1 (Deduction Problem [2]). Let φ = νñ.σ be a frame, and t a ground term. We
say that t is deduced from φ modulo E, denoted by φ `E t, if there exists a term s such that
sσ =E t and fn(s) ∩ ñ = ∅. The term s is called a recipe of t in φ modulo E.

Another form of knowledge is the ability to tell if two frames are statically equivalent modulo
E, sometimes also called indistiguishability.

Definition 2 (Static Equivalence [2]). Two terms s and t are equal in a frame φ = νñ.σ
modulo an equational theory E, denoted (s =E t)φ, iff sσ =E tσ, and ñ ∩ (fn(s) ∪ fn(t)) = ∅.
Two frames φ = νñ.σ and ψ = νñ.τ are statically equivalent modulo E, denoted as φ ≈E ψ, if
Dom(σ) = Dom(τ) and for all terms s and t, we have (s =E t)φ iff (s =E t)ψ.

Both deduction and static equivalence are known to be decidable in subterm convergent
theories [2]. In the following, we lift this result to term rewrite systems that are subterm
convergent modulo some equational theory.

3 Subterm Equational Convergent TRS

Consider (Σ, E) = (Σ1 ∪ Σ2, R1 ∪ E2) where (Σ1 ∪ Σ2, R1) is a TRS modulo a finite theory
(Σ2, E2) (for instance Σ2 = {+} and E2 = AC(+)). The rewrite relation of R1 modulo E2 is
defined as usual: s →R1,E2

t if there exist some position p in s, some rule l → r ∈ R1 and
a substitution µ such that s|p =E2 lµ and t = s[rµ]p. We assume that →R1,E2 is convergent
modulo E2 [15]. This implies the uniqueness of normal forms modulo E2 and the decidability of
the word problem modulo E: for any terms s and t, we have s =E t iff (s ↓R1,E2

) =E2
(t ↓R1,E2

).
In the following, we say that a term or a substitution is normalized if it is normalized w.r.t
→R1,E2

. A frame φ = νñ.σ is said to be normalized if σ is normalized.

Definition 3. Let Σ1 and Σ2 be two disjoint signatures, and (Σ2, E2) a finite theory. A subterm
E2-convergent TRS (Σ1 ∪Σ2, R1) is a TRS such that →R1,E2

is convergent modulo E2 and for
any l→ r in R1, l is not Σ2-rooted and r is a strict subterm of l or a ground term.

Example 1. The following TRSs are subterm AC(+)-convergent:

{occ(x+ k, k)→ ok} {rm(x+ k, k)→ x}
{dec(enc(x, k + y), k)→ x} {dec(enc(x, k), k + y)→ x}

In the case of subterm convergent TRSs (modulo the empty theory), the decision procedure
for the deduction problem computes deducible terms among the set of subterms occurring in
the frame. When considering a non-empty theory E2, we have to introduce an extended notion
of subterm to capture the fact that matching modulo E2 is now performed when applying a
rewrite step modulo E2.

In the rest of this section we assume that E2 is both permutative and syntactic. While this
may seem somewhat restrictive it allows for the consideration of theories such as AC and C
which are found in a large number of security protocols. Both AC and C are indeed syntactic
theories [16].

Given a term t, St(t) is the finite set of terms in t inductively defined as follows:

St(t) = {t′ | t′ =E2
t} ∪

{
t′ t′ ∈ St(xiσ), f(x1, . . . , xm)σ =E2

t, f ∈ Σ1 ∪ Σ2

x1, . . . , xm are pairwise disjoint variables

}
3
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This definition is well-founded since E2 is permutative. There exists a mutation-based E2-
matching algorithm [11] since E2 is syntactic, and so St(t) is computable.

For a set of terms T , St(T ) =
⋃
t∈T St(t), and for a substitution σ, St(σ) = St(Ran(σ)).

Proposition 1. For any terms t, t′, t =E2 t
′ implies St(t) = St(t′), and for any position p in

t, St(t|p) ⊆ St(t).

The following result states that we cannot generate a new term outside St(t) by rewriting
terms in St(t) (except the ground right-hand sides of R1).

Lemma 1. If lσ =E2 t, then for any position p of l, (l|p)σ ∈ St(t).

Proof. By structural induction on l.
If l is a variable, this is trivial since the only possible position is ε and l|ε = l.
Assume l is a term f(l1, . . . , lm) and σ is a substitution such that f(l1, . . . , lm)σ =E2 t.
If there is an equational step at the root position, then there exist some terms g1, . . . , gm

such that l1σ =E2
g1, . . . , lmσ =E2

gm and f(g1, . . . , gm) =E2
t. By definition of St(t) and

Proposition 1, the terms g1, . . . , gm are in St(t), and so l1σ, . . . , lmσ ∈ St(t).
If there is no equational step at the root position, then t is of the form f(t1, . . . , tm) and

l1σ =E2 t1, . . . , lmσ =E2 tm. By definition of St(t) and Proposition 1, the terms t1, . . . , tm are
in St(t), and so l1σ, . . . , lmσ ∈ St(t).

4 Decision Procedures

From now on, we assume that E2 is a shallow permutative theory, e.g., Commutativity.

Deduction. The decision procedure for the deduction problem requires the computation of
some finite deducible terms defining the so-called completion of a given frame.

Definition 4. Let φ = νñ.σ be a normalized frame. The set of local deducible terms in φ is
the smallest set D such that:

• Ran(σ) ⊆ D,

• if t1, . . . , tn ∈ D and f(t1, . . . , tn) ∈ St(σ) then f(t1, . . . , tn) ∈ D,

• if t ∈ D, t′ ∈ St(σ), t =E2
t′, then t′ ∈ D,

• if there is a root reduction s[r̄] →ε
R1,E2

t where |s| ≤ |R1|, fn(s) ∩ ñ = ∅, r̄ ∈ D and
t ∈ St(σ), then t ∈ D.

Let σ∗ = σ{χu 7→ u | u ∈ D\Ran(σ)} where χu is a fresh variable. The frame φ∗ = νñ.σ∗
is called the completion of φ with respect to R1. The recipe substitution of φ is ζφ = {χu 7→
ζu | u ∈ D\Ran(σ)} where ζu denotes an arbitrary recipe of u w.r.t. φ.

The decision procedure is based on the following reduction lemma, using the facts that
the completion is computable and the deduction problem is decidable in the empty equational
theory.

Lemma 2. Let E = R1 ∪ E2 where R1 is any subterm E2-convergent TRS and E2 is any
shallow permutative theory. For any normalized frame φ and any normalized term t, we have
that φ `E t if and only if φ∗ ` t.

4
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Static Equivalence. The decision procedure for the static equivalence is based on the com-
putation of small equalities bounded by the size of R1.

Definition 5. Let φ = νñ.σ be a normalized frame. The set Eq(φ) is the set of equalities
tζφ = t′ζφ such that (tζφ)σ =E (t′ζφ)σ where t, t′ are Σ-terms, (fn(t) ∪ fn(t′)) ∩ ñ = ∅,
|t|, |t′| ≤ |R1|. Given any frame ψ = νñ.τ , the fact that tτ =E t′τ for any t = t′ ∈ Eq(φ) is
denoted by ψ |= Eq(φ).

To get a decision procedure, it remains to show that checking small equalities defined by
Eq are sufficient to prove the static equivalence of the two input frames. Note that the check
of each of these equalities is effective since the E-equality is decidable.

Lemma 3. Let E = R1 ∪ E2 where R1 is any subterm E2-convergent TRS and E2 is any
shallow permutative theory. For any normalized frames φ and ψ, we have that φ ≈E ψ iff
ψ |= Eq(φ) and φ |= Eq(ψ).

Main result. According to the above reduction lemmas, we get the following result.

Theorem 1. Let E = R1 ∪ E2 where R1 is any subterm E2-convergent TRS and E2 is any
shallow permutative theory. Then, deduction and static equivalence are decidable in E.

To prove both reduction lemmas (Lemma 2 and Lemma 3) and so Theorem 1, we reuse the
same approach as in [1, 2] by applying two technical lemmas.

The first lemma in the appendix of [1] can be generalized as follows.

Lemma 4. Let E = R1∪E2 where R1 is any subterm E2-convergent TRS and E2 is any shallow
permutative theory. For any terms s and t satisfying the name restriction, if sφ∗ =E2 tφ∗ and
ψ |= Eq(φ) then (sζφ)ψ =E (tζφ)ψ.

Then, the second lemma in the appendix of [1] is generalized in the following way.

Lemma 5. Let E = R1∪E2 where R1 is any subterm E2-convergent TRS and E2 is any shallow
permutative theory. For any term s satisfying the name restriction and for any term t such
that sφ∗ →R1,E2

t, there exists a term u satisfying the name restriction such that t =E2
uφ∗

and for any frame ψ such that ψ |= Eq(φ), (sζφ)ψ =E (uζφ)ψ.

The proofs of Lemma 4 and Lemma 5 can be found in [13]. The assumption that E2 is
shallow permutative allows us to get simple proofs.

We are working on generalizing Theorem 1 to syntactic permutative theories E2 like for
instance Associativity-Commutativity. In this general case, the related reduction lemmas for the
deduction problem and the static equivalence should be more complicated to express. Indeed, we
may have to integrate a deduction procedure modulo E2 in the construction of the completion,
and a static equivalence procedure modulo E2 to get a reduction lemma for static equivalence
in R1 ∪ E2.

5 Related Work and Conclusion

The intruder deduction problem corresponds to the general cap problem studied in [4]. Among
other results, it is shown in [4] that the general cap problem is in NP for dwindling convergent
rewrite systems, which are indeed subterm convergent theories. The NP procedure is given
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by a saturation procedure used to complete the knowledge given by the input frame. In the
conclusion of [4], the extension to AC-rewrite systems is mentioned as an interesting future
work.

Currently we assume in Definition 3 that the Σ2-symbols are constructors, i.e., not appearing
at the root of the left-hand sides of the rewrite system. However, this appears to be more
restrictive than needed. Indeed, it should be possible to remove this restriction and consider
a more relaxed definition where the Σ2-symbols are not necessarily constructors. This would
allow us to solve the deduction and static equivalence problem in a larger class of theories.
For example, we could then consider the theory of Abelian Pre-Group (APG) defined by the
following C-convergent TRS:

RAPG = {x ∗ e→ x, x ∗ i(x)→ e, i(i(x))→ x, i(e)→ e}

where C = {x ∗ y = y ∗ x}. In [20], APG = RAPG ∪ C was considered as an approximation to
deal with unification in homomorphic encryption over Abelian groups. Theorem 1 would then
allow us to also solve the problems of deduction and static-equivalence in APG.

The next step of our work is to go beyond the class of shallow permutative theories, in
order to take into account a larger class including AC. Due to the potential interest of AC
in protocol analysis, it is useful to be able to handle some AC-rewrite systems and to study
the AC-extension of saturation procedures that have been developed for the intruder deduction
problem, the static equivalence [6], and the static inclusion [14].

Another challenging problem is to investigate the equational extension of the combination
procedure developed in [12] for the deduction and the static equivalence in unions of theories
sharing absolutely free constructors. This would permit us to consider shared AC-constructors.

Acknowledgments: We would like to thank Véronique Cortier for helpful comments and
discussions.
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[9] Véronique Cortier and Stéphanie Delaune. Decidability and combination results for two notions
of knowledge in security protocols. Journal of Automated Reasoning, 48(4):441–487, 2010.

[10] Ştefan Ciobâcă, Stéphanie Delaune, and Steve Kremer. Computing knowledge in security protocols
under convergent equational theories. J. Autom. Reasoning, 48(2):219–262, 2012.

[11] Serdar Erbatur, Deepak Kapur, Andrew M. Marshall, Paliath Narendran, and Christophe Ringeis-
sen. Unification and matching in hierarchical combinations of syntactic theories. In Carsten Lutz
and Silvio Ranise, editors, Frontiers of Combining Systems - 10th International Symposium, Fro-
CoS 2015, Wroclaw, Poland. Proceedings, volume 9322 of LNCS, pages 291–306. Springer, 2015.

[12] Serdar Erbatur, Andrew M. Marshall, and Christophe Ringeissen. Notions of knowledge in com-
binations of theories sharing constructors. In Leonardo de Moura, editor, Automated Deduction
- CADE 26 - 26th International Conference on Automated Deduction, Gothenburg, Sweden, Pro-
ceedings, volume 10395 of LNCS, pages 60–76. Springer, 2017.

[13] Serdar Erbatur, Andrew M. Marshall, and Christophe Ringeissen. Computing knowledge in equa-
tional extensions of subterm convergent theories. Available at https://hal.inria.fr, 2018.

[14] Kimberly A. Gero. Deciding Static Inclusion for Delta-strong and Omega Delta-strong Intruder
Theories: Applications to Cryptographic Protocol Analysis. PhD thesis, State University of New
York aty Albany, 2015.

[15] Jean-Pierre Jouannaud and Hélène Kirchner. Completion of a set of rules modulo a set of equations.
SIAM J. Comput., 15(4):1155–1194, 1986.

[16] C. Kirchner and F. Klay. Syntactic theories and unification. In Logic in Computer Science, 1990.
LICS ’90, Proceedings., Fifth Annual IEEE Symposium on Logic in Computer Science, pages
270–277, Jun 1990.

[17] Jonathan Millen and Vitaly Shmatikov. Constraint solving for bounded-process cryptographic
protocol analysis. In Proceedings of the 8th ACM Conference on Computer and Communications
Security, CCS’01, pages 166–175, New York, NY, USA, 2001. ACM.

[18] Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols. Computer
Security, 6:85128, 1998.

[19] Manfred Schmidt-Schauß. Unification in permutative equational theories is undecidable. J. Symb.
Comput., 8(4):415–421, 1989.

[20] Fan Yang, Santiago Escobar, Catherine Meadows, José Meseguer, and Paliath Narendran. Theories
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Abstract. In this paper we introduce a concept of a minimal and complete
set of E-unifiers λUΣE(Γ ) for a unification problem Γ, based on homeomor-
phic embedding modulo an equational theory E. We propose a definitional
framework based on notions and definitions of standard unification theory of
first order terms extended to the (homeomorphic) embedding order modulo E.
The main result is that the set λUΣE(Γ ) always exists for a finite signature
Σ and it is always finite.

1. Introduction

Ordering is a well established concept in mathematics and it plays an important role in many
areas of computer science too. Quasi orderings (qo) and most noteably well founded quasi or-
derings (wfo) and well quasi orderings (wqo) in particular are of great general interest, see [13].
Probably the most popular application within our own field is the use of certain quasi orders and
well quasi orders on first order terms to prove the termination of rewriting rules, see [3, 4].

In the theory of E-unification of terms based on a signature Σ and an equational theory E, the
set UΣE(Γ) denotes the set of all E-unifiers of a unification problem Γ. Of great interest is now
to find a complete and minimal subset of UΣE(Γ), denoted as µUΣE(Γ), from which all other
E-unifiers can be obtained.

Equality on terms induced by the equational theory E will be denoted as =E and the E-
subsumption order on terms is denoted as ≤E . So, if there are two unifiers τ and σ for the terms
s and t, such that sτ =E tτ and sσ =E tσ and there is a substitution λ, such that τ =E σλ, then
τ is an instance of σ, or σ subsumes τ , denoted σ ≤E τ . This led to the notion of a most general
E-unifier (mgu), that is an E-unifier, which is not an instance of any other E-unifier. The set of
most general unifiers is denoted as µUΣE(Γ) and every E-unifier is E-subsumed by some element
of µUΣE(Γ), that is, it can be obtained by instantiaton in an automated reasoning process, such
as resolution [17]. Often we shall drop the E in E-unifiers if it is understood from the context.

To illustrate the role of orderings in E-unification, consider the equational theory A for free
semigroups with the axiom of associativity for terms built over a binary function symbol f with A =

{f(x, f(y, z)) = f(f(x, y), z)}. This is also known as the word (or string) algebra and the notation
is that of words (strings), where we just drop the function symbol f and have concatenation of
symbols.
For example the string unification problem Γ1 = {ax =? xa} has most general unifiers of the form
σn = {x ↦ an ∶ n ≧ 1}. Because the σn are ground substitutions, they are incomparable with
respect to the subsumption order, so µUΣA(Γ1) = {σn ∶ n ≧ 1} is an infinite set and therefore Γ is
of unification type infinitary. Furthermore, since the subsumption order is not a well quasi order,
there are equational theories such that the set of mgus does not exist (see[2][18][9]).

In order to address these problems, we proposed the encompassment of terms (see e.g.[11])
to be generalized to the notion of encompassment of unifers and introduced the notion of an

Key words and phrases. Universal algebra, equational theory, ordering, unification theory,
E-unification, essential unification, (homeomorphic) embedded E-unifiers, pure E-unifier.
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essential unifier. We say σ is encompassed by τ , σ ⊑E τ , iff each domain variable x of τ is also
a domain variable of σ and xτ has an instance of xσ as a subterm (modulo E). E-unifiers, which
do not encompass any other unifier are then called essential unifiers and the complete set of
essential unifiers is denoted as eUΣE(Γ) for a unification problem Γ. If µUΣE(Γ) exists, we have
eUΣE(Γ) ⊆ µUΣE(Γ), that is, the encompassment order generalizes the subsumption order and
there are even cases where an E-unification problem with an infinite set of mgus reduces to a finite
set of essential unifiers [10, 18]. Moreover it can happen, that an equational theory E, for which
µUΣE(Γ) does not exist may have a minimal and complete set of essential unifiers eUΣE(Γ).

For example the unification type of Γ1 from above changes drastically using the encompassment
order: the essential unifier σ1 = {x↦ a} encompasses all the other most general unifiers σn = {x↦
an}, n > 1, because σ1 ⊑A σn, n > 1. More precisely encompassment allows the decomposition
σn = λnσ1, where λn = {x↦ anx}, n ≧ 0. So the minimal and complete set of essential unifiers for
Γ1 is eUΣE(Γ1) = {σ1}, that is, it is unitary instead of infinitary as it is under the subsumption
ordering.

Nevertheless there are still essentially infinitary string unification problems, as the following
example shows. Let Γ2 = {xby =? ayayb} be the string unification problem, which has eUΣA(Γ2) =

{{x ↦ abna, y ↦ bn} ∶ n > 0} as its minimal and complete set of essential unifiers. The unifiers
are incomparable with respect to encompassment, because abna can not be a substring of abma
for m ≠ n. Forthermore, as the encompassment order on unifying substitutions is not a wqo,
unfortunately again, there are theories with a solvable unification problem Γ, for which eUΣE(Γ)

does not exist (see [2][8][18]).
This paper deals with a third approach, the extension of the well known homeomorphic embed-

ding of terms to a homeomorphic embedding modulo E of terms (also used in [1] with a different
definition) and to a homeomorphic embedding modulo E of substitutions, called E-embedding of
terms or substitutions respectively. Informally, the homeomorphic embedding of terms is under-
stood as follows: Let s and t be terms, then s is syntactically embedded into t, denoted as s ⊴ t iff
s=t, or s ⊴ ti for t = f(t1, ..., tn) and some i or si ⊴ ti for s = f(s1, ..., sn) and all i. For example
f(x, b) ⊴ f(g(a, x), f(x, b)) and also f(x, b) ⊴ f(f(a, h(x)), f(b, a)) and f(a, x) ⊴ f(g(a, b),x),
but f(a, b) ⋬ f(g(a, b), x).

The E-embedding order for terms, denoted as ⊴E , will be lifted to an E-embedding order
for substitutions similar to the encompassment order in [18]. We define σ ⊴E τ iff each domain
variable x of τ is also a domain variable of σ and xτ homeomorphically E-embeds xσ, that is if
τ = {xi ↦ ti} and σ = {xi ↦ si}, 1 ≦ i ≦ n, then σ ⊴E τ iff si ⊴E ti. To illustrate the effect of this
E-embedding order, take Γ2 from above as an example, where E is the equational theory A for
strings. In this case aba ⊴A ab......ba and b ⊴A b.....b, hence with σ1 = {x ↦ aba, y ↦ b} we have
σ1 ⊴A σn for all n > 1. Consequently σ1 is the only unifier and the set of embedment free unifiers
for Γ2 is λUΣA(Γ2) = {σ1} and it is finite. In fact it can be shown that the theory is even unitary
instead of infinitary under the subsumption and encompassment order [8, 9].

But in order to generalize the encompassment order for terms to the embedment order for
unification problems, we need a more general notion of embedment. This is achieved by defining,
that a term s is E-instance-embedded into a term t iff an instance of s, say sλ, is E-embedded into
t, which we call λ−embedded modulo E or λE-embedding. This is denoted as s ⩿E t . Furthermore
E-unifiers, which have no E-instance embedded unifier are called embedment free E-unifiers or
free λE-unifiers and the complete set of free λE-unifiers is denoted as λUΣE(Γ) for a unification
problem Γ.

In the following we introduce the concept of a minimal and complete set of E-unifiers based on
λE-embedding and propose a definitional framework based on notions and definitions of standard
unification theory extended to the (homeomorphic) E-embedding order.

2. Notions and Notation

Notation and basic definitions in unification theory are well known and have found their way
into many and diverse academic fields and most monographs and textbooks on automated reason-
ing have sections on unification. In the full paper to be published in a journal we unify the various
presentations of the necessary concepts for unification towards a concise notation which serves our
purpose and we show how the additional concepts for ordering E-unifiers based on homeomorphic
embedding can be built upon these definitions. These sections as well as several proofs and details
are deleted in this workshop paper.
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Our main interest is to show that the set of free λE-unifiers always exists and the main technique
to show this result is based on orderings, in particular on well quasi orderings.

Definition 1. A quasi order is a relation that is reflexive and transitive.

A term t is an instance of a term s, denoted s ≤ t, if sσ = t for some substitution σ

s ≤ t ⇐⇒ ∃σ ∶ sσ = t

We also say s (syntactically) subsumes t and this relation is a quasi order (or preorder as it is
sometimes called). We call it the subsumption order on terms.
A term t (syntactically) encompasses a term s, denoted s ⊑ t, if an instance of s is a subterm of
t. With Sub(t), the set of all subterms of t, we have:

s ⊑ t ⇐⇒ ∃σ ∶ sσ ∈ Sub(t)

Encompassment conveys the notion that s appears in t with a context “above” and a substitution
instance “below”. We say t encompasses s or s is encompassed by t and ⊑ is the encompassment
order . In particular s ⊏ t is called strict encompassment , if sσ is a proper subterm of t.

A term s is homeomorphically embedded into t iff s can be obtained from t by erasing some
parts in t. We abbreviate “homeomorphical embedding” just to “embedding”. Embedment conveys
the notion that the structure of s and some corresponding symbols appear within t. A term s

is instance-embedded into t, we also say it is λ-embedded into t, iff an instance of s, i.e. sλ, is
embedded into t. This is the main notion of this paper, which we will generalize to embedment
of substitutions later on.1

Using s ⪯ t to denote that s is a subterm of t, we have the following orders on terms, extended to
equality modulo E for the congruences induced by the equations in E. :

Definition 2. (ordering terms modulo E)

(1) A term s is an E-subterm of t, denoted s ⪯E t, iff there is an s′ =E s and a term t′ =E t
such that s′ ⪯ t′.

(2) A term s E-subsumes t, s ⩽E t, iff there exists a substitution σ with sσ =E t.
(3) A term s is E-encompassed by t, s ⊑E t iff there is a substitution σ such that sσ ⪯E t.
(4) A term s is E-embedded into a term t, denoted s ⊴E t, if s =E t, or there is a term s′ =E s

and a term t′ =E t such that s′ is syntactically embedded into t′:

s ⊴E t ⇐⇒

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

s =E t, or

t = f(t1, . . . , tn) and ∃s
′
∈ [s]E and ∃t′i ∈ [ti]E ∶ s′ ⊴ t′i, or

t = f(t1, . . .tn), s = f(s1, . . .sn),

and ∀i ∶ s′i ⊴ t
′

i, where s
′
∈ [si]E , t

′
∈ [ti]E .

(5) A term s is E-instance-embedded into t, denoted s ⩿E t, if an instance of s is E-embedded
into t , that is sλ ⊴E t for a substitution λ. We say s is λE-embedded.

Theorem 3. The E-embedment order, ⊴E , is a quasi order on terms.

Proof. Let r, s, t be terms.
reflexivity: r ⊴E r is obvious, because terms embed themselves.
transitivity: r ⊴E s ⊴E tÔ⇒ r ⊴E t.
By Definition 2.(4) r ⊴E sÔ⇒ ∃r′ ∈ [r]E and ∃s′ ∈ [s]E ∶ r′ ⊴ s′ and
s ⊴E tÔ⇒ ∃s′′ ∈ [s]E and ∃t′′ ∈ [t]E ∶ s′′ ⊴ t′′.
Now r′ ⊴ s′ =E s′′ and s′′ ⊴ t′′ Ô⇒ r′ ⊴E t′′.
Hence r =E r′ ⊴E t′′ =E tÔ⇒ r ⊴E t.

�

Definition 4. (ordering of substitutions modulo E restricted to a set of variables)
Let V be some set of variables.

1Signs and notation are still not uniform in all related fields; our notation is used more often
in the literature on automated theorem proving and unification theory, whereas term rewriting
systems usually prefer notational conventions as proposed in [5] and [6].
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(1) A substitution σ is a sub-substitution modulo E of τ , denoted as σ ⪯
V
E τ , if Dom(σ) =

Dom(τ) and these are variables in V and for all x in this domain xσ is an E-subterm
of xτ , i.e. xσ ⪯E xτ .

(2) A substitution σ E-subsumes a substitution τ restricted to V , denoted as σ ≤
V
E τ , if there

exists a substitution λ such that σλ =VE τ . The relation ≤
V
E is called the E-subsumption

order for substitutions restricted to V.
We denote E-subsumption equivalence as σ ∼VE τ , if σ ≤

V
E τ and τ ≤VE σ.

(3) A substitution σ is E-encompassed by τ restricted to V , denoted σ ⊑
V
E τ , if there exists

λ, such that (σλ) ∣V is a sub-substitution of τ modulo E restricted to V. We denote
E-encompassment equivalence as σ ≈VE τ if σ ⊑

V
E τ and τ ⊑VE σ.

(4) A substitution σ is E-embedded into a substitution τ , denoted as σ ⊴
V
E τ , iff Dom(σ) =

Dom(τ) and for all x in this domain we have xσ ⊴
V
E xτ .

(5) A substitution σ is λE-embedded into a substitution τ , denoted as σ ⩿
V
E τ , iff Dom(σ) =

Dom(τ) and there is a substitution λ, such that ∀x ∈ V ∶ x(σλ) ∣V is E-embedded into
xτ .

The encompassment and embedment order on terms are well known as quasi orderings, but
the modulo E extension to substitutions requires verification.

Theorem 5. The E-encompassment order is a quasi order on substitutions.

For a proof see [18] and the early proof in [10].

Theorem 6. The E-embedment order is a quasi order on substitutions.

Proof. This is shown by lifting Theorem 3 for terms componentwise to substitutions.
�

Theorem 7. The λE-embedment order ⩿E is a quasi order on terms.

Proof. Let r, s, t be terms:
reflexivity: is obvious because every term λ-embeds itself.
transitivity: we show r ⩿E s ⩿E t implies r ⩿E t.
By Definition 2.(5) we have:
r ⩿E s implies ∃σ ∶ rσ ⊴E s and
s ⩿E t implies ∃τ ∶ sτ ⊴E t. Furthermore:
rσ ⊴E sÔ⇒ ∃r̃ ∈ [rσ]E and ∃s′ ∈ [s]E ∶ r̃ ⊴ s′ and
sτ ⊴E tÔ⇒ ∃s̃ ∈ [sτ]E and ∃t′ ∈ [t]E ∶ s̃ ⊴ t′.
Since it can be shown that ⊴ is substitution-composable from the right we have
r̃ ⊴ s′ Ô⇒ r̃τ ⊴ s′τ and s′τ =E s̃ ⊴ t′ Ô⇒ s′τ ⊴E t′.
Now: r̃τ ⊴ s′τ ⊴E t′ and transitivity of ⊴E implies r̃τ ⊴E t′

and r(στ) ⊴E s′τ ⊴E t′ =E t and transitivity of ⊴E
implies r(στ) ⊴E t. But this means r ⩿E t.

�

Theorem 8. The λE-embedment order is a quasi order on substitutions.

Proof. similar to Theorem 7 by lifting it componentwise to substitutions.
�

Our interest in this paragraph is on quasi orderings and the next definition lists some well
known notions, see [12, 16].

Definition 9. Let ≤ be a quasi ordering on a set S, then:

(1) An infinite sequence of elements of S, a1, a2, a3, ... is called a ≤−chain if ai ≤ ai+1 for all
i ≥ 1. The sequence a1, a2, a3, ... is said to contain a chain if it has a subsequence that
is a chain.

(2) The infinite sequence a1, a2, a3, ... is called an antichain if neither ai ≤ aj nor aj ≤ ai,
for all 1 ≤ i, j and i≠j.

(3) The quasi ordering ≤ is well-founded (wfo) if it contains no infinite strictly descending
<-chain; that is, there is no infinite sequence a1, a2, a3, ... of elements of S such that
ai > ai+1 for every i in N.
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(4) A well-quasi-ordering on S (wqo), ≤, is a quasi-ordering which is well-founded and it has
no infinite antichains in S with respect to ≤.

The following Tree Theorem due to Kruskal states that the set of finite trees over a well-
quasi-ordered set of labels is itself well-quasi-ordered under homeomorphic embedding. He uses a
notation where T(Y) denotes the collection of all (structured) trees over an alphabet Y.

Theorem 10. The Tree Theorem.
If Y is well quasi ordered then T(Y) is well quasi ordered too.

Proof. See Joseph B. Kruskal [12] and the more elegant proof by Crispin Nash-William [16]
�

The following theorem is a consequence of the tree theorem for the set of first order terms
T (F,X), built over a finite set of function symbols F and a finite set of variable symbols X.
Hereby we refer to the work of Jean H. Gallier and M. Leuschel [7, 15]. They discuss the proof
that “Given a finite alphabet Σ =F ∪X which is well quasi ordered (in our case by equality) then
⊴ is also a well quasi order on T (F, X)”. The next theorem is a genaralisation to “modulo E”.

Theorem 11. Let E be an equational theory. The E-embedding relation , ⊴E , is a well quasi
order on the set of terms built over a finite signature.

Proof. (Sketch)
(i) ⊴E is well founded .
If not, then there exists an infinite strictly descending ⊳E −chain: t1 ⊳E t2 ⊳E t3 ⊳E ....
which has the more detailed form: t′1 ⊳ t

′

2 =E t′′2 ⊳ t′3 =E t′′3 ⊳ t′4.... Now take the following
infinite sub sequence of terms t′1, t

′

2, t
′

3, .... Because of Theorem 10 there are
two indices i, j, i<j such that ti is embedded into tj , hence the chain above can not be infinite.
Thus ⊴E is well founded.
(ii) There are no antichains with respect to ⊴E .
Otherwise there is an ⊴E-antichain s1, s2, s3, ... with respect to ⊴E and it can be shown
that in this case there exists a corresponding infinite sequence of terms s′1, s

′

2,s
′

3, .... , where
s′i ∈ [si]E , i ≥ 1, which are incomparable and this again contradicts Kruskal’s theorem.

�

E-unification of first order terms is based on an infinite set of variable symbols and it is well
known, that the embedding order of terms with an infinite set of variable symbols is not a well
quasi order, since we have the antichain x1, x2, x3, .. Of course the same is the case then for
embedment modulo E.
But fortunately well foundedness of the embedding ordering is still valid, since the number of
symbols decreases in a strictly descending ⊳ −chain .

Theorem 12. Let E be an equational theory. E-embedding, ⊴E , is a well founded quasi order
on the set of terms.

Proof. The proof is based on the fact that E-equivalent terms do not have new variable symbols.
�

The next Theorem is similar and shows that λE-embedding is well foundned too.

Theorem 13. Let E be an equational theory. λE−embedding, ⩿E , is a well founded quasi
order on the set of terms.

3. Ordering E-unifiers under homeomorphic embedding

We shall now look at unification under λE-embedding, which is our main interest in this paper,
and we start with a recapitulation of the standard notions of E-unification.
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3.1. E-Unification. Let E be an equational theory and let Σ be the signature of the term algebra.
An E-unification problem is a finite set of equations

Γ = {s1 =
?
E t1, . . . , sn =

?
E tn}

An E-unifier for Γ is a substitution σ such that

s1σ =E t1σ, . . . , snσ =E tnσ

The set of all E-unifiers of Γ is denoted UΣE(Γ). A complete set of E-unifiers cUΣE(Γ) for Γ is
a set of E-unifiers, such that for every E-unifier τ there exists σ ∈ cUΣE(Γ) with σ ≤E τ . The set
µUΣE(Γ) is called a minimal complete set of E-unifiers for Γ, if it is complete and for all distinct
elements σ and σ′ in µUΣE(Γ) if σ ≤E σ′ then σ =E σ′.

3.2. E-Unifiers ordered by Homeomorphic Embedding. This paper is based on the obser-
vation that certain solutions embed the instances of other solutions. This then leads to the notion
of (embedment-) free E-unifiers, where free E-unifiers are the elements of our new minimal and
complete set of E-unifiers, which we denote as λUΣE(Γ).

Definition 14. Let E be an equational theory, Γ a solvable E-unification problem and let
UΣE(Γ ) be the set of E-unifiers for Γ . If an E-unifier σ in UΣE(Γ ) does not have any instance
E-embedded unifier (any λE-embedded unifier), then σ is called a free λE-unifier . The minimal
and complete set of free λE-unifiers will be denoted as λUΣE(Γ ).

Theorem 15. For first order terms built over a finite signature Σ and a solvable unification
problem Γ and an equational theory E: The set of free λ-unifiers, λUΣE(Γ ), exists and it is
minimal, complete and finite.

Proof. The proof is based on Theorem 11
�

It is well known that the set of terms can not be well quasi ordered since we usually have an
infinite set of variables and they form an antichain. That is, we can not use Theorem 11. But
it may be possible for an automated deduction system to set a limit to the number of variables
involved in the search for a proof and the above theorem would be still useful.

Unfortunately we do not know if the relation ⩿E is wqo2. But we know it is wellfounded and
hence we have:

Theorem 16. For a signature Σ, a solvable unification problem Γ and an equational
theory E: The set of free λE-unifiers, λUΣE(Γ ), exists and is minimal and complete. But it is
not necessarily finite .

Finally there is a standard trick used in logic programming [14] [15] as well as in termination
research for term rewriting systems [5], namely to disregard the name of a variable and simply
view all variables as the same entity. This observation led to the notion of pure embedding, which
we abbreviate to π-embedding in the following and it will be denoted as s ⊴π t. As before we
generalize embedding to instance embedding or π-embedding by saying a term s is π-embedded
into a term t, if it is λ-embedded and in addition the names of the variable symbols are ignored.
It is defined as follows:

Definition 17. (Pure E-embedding)

(1) A term s is πE-embedded into a term t, denoted s ⊴πE t, if s and t are variables, or s =E t
or there is a term s′i =E si and a term t′i =E ti such that s′i is πE- embedded into t′i :

s ⊴πE t ⇐⇒

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

s =E t, or s and t are variables or

t = f(t1, . . . , tn) and ∃s
′
∈ [s]E and ∃t′i ∈ [ti]E ∶ s′ ⊴πE t′i or

t = f(t1, . . .tn) and s = f(s1, . . .sn)
and ∀i ∶ s′i ⊴

π
E t′i, where s

′
∈ [si]E , t

′
∈ [ti]E .

(2) A term s is instance πE-embedded into a term t, denoted s ⩿πE t, if an instance of s is
πE-embedded into t , that is sλ ⊴πE t for a substitution λ.

2We have not been able to prove it (yet) nor to disprove it.
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(3) A substitution σ is instance πE−embedded into a substitution τ for a set of variables
V, denoted as σ ⩿

πV
E τ , iff Dom(σ) = Dom(τ) and there is a substitution λ, such that

∀x ∈ V ∶ x(σλ) ∣V is π-embedded into xτ .
Since instance π-embedding is a special case of λ-embedding we have (using theorem 11) that
π-embedding, s ⊴π t , is a well quasi order on the set of terms and it is now easy to show that
π-embedding is a well quasi order on the set of substitutions as well.

Theorem 18. πE-embedding is a well quasi order on the set of substitutions.

The final step is now to extend πE-embedding of substitutions to instance πE-embedding.

Theorem 19. Instance πE-embedding is a well quasi order on the set of substitutions.

E-unifiers which do not contain any instance πE-embedded unifiers are called free πE unifiers
and this set is denoted as πUΣE(Γ ).

Our main result now follows from these theorems, but note the completeness proof is more
complex than ususal, because we need a generator to compute all unifiers from πUΣE(Γ ).

Theorem 20. For first order terms built over a signature Σ, a solvable unification problem
Γ and an equational theory E: The set of free πE-unifiers, πUΣE(Γ ), exists and is minimal,
complete and finite.

4. Conclusion

These results do not imply that we have a general way of efficiently generating λUΣE(Γ ) nor
πUΣE(Γ ), which is unlikely to be found in general. We need to look for an appropriate algorithm
for each specific theory E, just as in standard unification theory and this has not been done yet.
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Abstract 

We present a new formalization in the Isabelle proof assistant of first-order syntactic 

unification, including a proof of termination. Our formalization follows, almost down to 

the letter, the ML-code from Baader and Nipkow's book "Term Rewriting and All That" 

(1998). Correctness is implied by the formalization's similarity to Baader and Nipkow's 

ML-code, but we have yet to formalize the correctness of the unification algorithm. 

1 Introduction 

We present a new and concise formalization in the Isabelle proof assistant [1] of a quite simple 

first-order syntactic unification algorithm. In particular we provide a formal proof of termination. The 

Isabelle2017 formalization is available here: 
 

https://github.com/logic-tools/unification 

 

We follow the succinct presentation of the unification algorithm in Baader and Nipkow's book 

"Term Rewriting and All That" [2], Section 4.7 Unification and term rewriting in ML, with 

Isabelle/HOL types as follows. 

 

type_synonym vname = "string × int" 

 

datatype "term" = V vname | T "string × term list" 

 

type_synonym subst = "(vname × term) list" 

 

A variable name consists of a name and an index (as mentioned in the book the index is not used 

in the current situation but it can simplify renaming). A term is either a variable or a compound term 

with a list of subterms. A substitution is a list of pairs, each with a variable name and a term, hence a 

so-called association list. 



2 The Unification Algorithm 

We first define a few auxiliary functions as in Baader and Nipkow's book [2]. 

 

definition indom :: "vname ⇒ subst ⇒ bool" where 

  "indom x s = list_ex (λ(y, _). x = y) s" 

 

fun app :: "subst ⇒ vname ⇒ term" where 

  "app ((y,t)#s) x = (if x = y then t else app s x)" 

| "app [] _ = undefined" 

 

fun lift :: "subst ⇒ term ⇒ term" where 

  "lift s (V x) = (if indom x s then app s x else V x)" 

| "lift s (T(f,ts)) = T(f, map (lift s) ts)" 

 

fun occurs :: "vname ⇒ term ⇒ bool" where 

  "occurs x (V y) = (x = y)" 

| "occurs x (T(_,ts)) = list_ex (occurs x) ts" 

 

We then define the unification algorithm using the option type rather than ML exceptions. 

 

function (sequential) solve :: "(term × term) list × subst ⇒ subst option" 

  and elim :: "vname × term × (term × term) list × subst ⇒ subst option" 

where 

  "solve([], s) = Some s" 

| "solve((V x, t) # S, s) = ( 

    if V x = t then solve(S,s) else elim(x,t,S,s))" 

| "solve((t, V x) # S, s) = elim(x,t,S,s)" 

| "solve((T(f,ts),T(g,us)) # S, s) = ( 

    if f = g then solve((zip ts us) @ S, s) else None)" 

 

| "elim(x,t,S,s) = ( 

    if occurs x t then None 

    else let xt = lift [(x,t)] 

      in solve(map (λ (t1,t2). (xt t1, xt t2)) S, 

        (x,t) # (map (λ (y,u). (y, xt u)) s)))" 

 

The unification algorithm is called as solve([(t1,t2)],[]) for terms t1 and t2 to unify and has 

exponential time and space complexity but performs well on practical examples, as pointed out in 

Section 4.7 of Baader and Nipkow's book [2]. 



3 The Termination Proof 

The termination proof is derived from the one given on the "Unification (computer science)" 

Wikipedia page [3]. The idea is to define a measure on the arguments of the function that gets smaller 

and smaller for each recursive call with respect to the lexicographic ordering. 

The measure is <nvar, nfun, |S|> with 

 

 nvar: number of unsolved variables in S, 

 nfun: number of constants and functions in S, and 

 |S|: number of equations in S. 

 

This differs from the one given on the Wikipedia page because that algorithm defines the set of 

solved equations as the subset of equations that have a variable on their left-hand side while Baader 

and Nipkow have an explicit set S representing these. For the same reason, Wikipedia's algorithm 

reorients equations with a lone variable on the right hand side, while Baader and Nipkow remove 

them from the set of unsolved equations and add them to the set of variable assignments that makes 

up the return value. 

The majority of the proof consists of showing basic theory about the three quantities, more 

specifically how they are reduced for each of the operations performed. 

Let us look at the proof and its formalization in more detail. We want to define the relation on 

arguments defined by lexicographical ordering on <nvar, nfun, |S|>. To do this we define functions 

which given the arguments to the solve function calculates nvar, nfun and |S|. Let us consider nvar first. 

The function is as follows: 

 
(λXX. case XX of Inl(l,_) ⇒ n_var l | Inr(x,t,S,_) ⇒ n_var ((V x, t)#S)) 
 

Here, XX represents the tuple consisting of the arguments given to the function call. We split on the 

pair-case Inl(l,_) representing a call to the solve function and the quadruple-case Inr(x,t,S,_) 

representing a call to the elim function. In both cases we use the function n_var to count the number 

of variables occurring in the set of unsolved equations. In the case for a call to elim we consider x = t 

an unsolved equation and therefore call n_var on ((V x, t)#S). The other components are defined in a 

similar way. We now compose the three measures to the desired relation. It is done using Isabelle's 

<*mlex*> operator. The operator is defined such that m <*mlex*> R takes a measure m and a relation R, 

and then turns the measure m into a relation and composes it lexicographically with the relation R. 

The measure is turned into a relation by comparing the size of the measure on given elements and 

letting this determine which element the relation considers larger. 

The relation we get is as follows: 

 
(λXX. case XX of Inl(l,_) ⇒ n_var l | Inr(x,t,S,_) ⇒ n_var ((V x, t)#S)) <*mlex*> 

(λXX. case XX of Inl(l,_) ⇒ n_fun l | Inr(x,t,S,_) ⇒ n_fun ((V x, t)#S)) <*mlex*> 

(λXX. case XX of Inl(l,_) ⇒ size l | Inr(x,t,S,_) ⇒ size ((V x, t)#S)) <*mlex*> 

(λXX. case XX of Inl(l,_) ⇒ 1 | Inr(x,t,S,_) ⇒ 0) <*mlex*> {} 

 

The last two components are (λXX. case XX of Inl(l,_) ⇒ 1 | Inr(x,t,S,_) ⇒ 0) and {}. The 

former is the measure which gives calls to solve size 1 and calls to elim size 0, and the latter is the 

empty relation. 

Our formal termination proof does an application of Isabelle's “relation” proof method which 

leaves us to prove subgoals expressing that the considered relation is wellfounded and that calls are 

related as desired by the relation. 



Let R represent the above relation. For the readers with the courage to read Isabelle syntax we 

state the 6 subgoals. 

 

1. 

      wf R 

2. 

      V x = t ⟹ (Inl (S, s), Inl ((V x, t) # S, s)) ∈ R 

3. 

      V x ≠ t ⟹ (Inr (x, t, S, s), Inl ((V x, t) # S, s)) ∈ R 

4. 

      (Inr (x, T v, S, s), Inl ((T v, V x) # S, s)) ∈ R 

5. 

      f = g ⟹ 

                (Inl (zip ts us @ S, s), 

                 Inl ((T (f, ts), T (g, us)) # S, s)) ∈ R 

6. 

      ¬ occurs x t ⟹ xa = lift [(x, t)] ⟹ 

                (Inl (map (λ(t1, t2). (xa t1, xa t2)) S, (x, t) # 

                      map (λ(y, u). (y, xa u)) s), 

                 Inr (x, t, S, s)) ∈ R 

 

Comparing subgoals 2-6 with the definition of solve and elim it is not hard to see where the goals 

come from. For instance in subgoal 2 we have that V x = t and the two Inl expressions indicate that 

we are looking at calls to solve. In one call with arguments ((V x, t) # S, s)) and in the other with 

(S, s). All this corresponds exactly to what is happening in the if-case of the second defining 

equation of solve. 

We use Isabelle's automation to prove subgoal 1 (wellfoundedness) and to simplify subgoals 2-6. 

We then prove the subgoals using appropriate lemmas that we have also formalized. 

4 Code Generation 

We illustrate Isabelle's code generation with a few minimal examples. It is possible to generate 

and load SML (Standard ML) code directly in the Isabelle formalization (called code reflection). 

 

code_reflect Unification 

  datatypes 

    "term" = V | T 

    and 

    char = zero_char_inst.zero_char | Char 

  functions 

    solve 

 

For the mininal examples we only need the solve function in addition to the term and char datatypes. 



This gives the following output displayed in Isabelle (inta is a generated datatype for integers used 

instead of the usual int datatype in SML and num is a generated datatype for natural numbers). 

 
  structure Unification: 

    sig 

      datatype char = Char of num | Zero_char 

      type inta 

      type num 

      val solve: 

         (term * term) list * ((char list * inta) * term) list -> 

           ((char list * inta) * term) list option 

      datatype term = T of char list * term list | V of char list * inta 

    end 

 

Alternatively one can export the generated SML code and for example save it in a separate file. 

 

export_code solve in SML 

 

Below we show a fragment of the generated SML code (besides SML it is possible to export to the 

functional programming languages Haskell, Ocaml and Scala). 

 
  fun elim (x, (t, (sa, s))) = 

    (if occurs x t then NONE 

      else let 

             val xt = lift [(x, t)]; 

           in 

             solve (List.map (fn (t1, t2) => (xt t1, xt t2)) sa, 

                     (x, t) :: List.map (fn (y, u) => (y, xt u)) s) 

           end) 

  and solve ([], s) = SOME s 

    | solve ((V x, t) :: sa, s) = 

      (if equal_terma (V x) t then solve (sa, s) else elim (x, (t, (sa, s)))) 

    | solve ((T v, V x) :: sa, s) = elim (x, (T v, (sa, s))) 

    | solve ((T (f, ts), T (g, us)) :: sa, s) = 

      (if List.equal_lista String.equal_char f g 

        then solve (List.zip ts us @ sa, s) else NONE); 

 

Back to the code reflection, we open the Unification structure in Isabelle (note the use of so-called 

cartouches ‹ … › around the SML code in the Isabelle formalization). 

 

ML ‹ open Unification › 

 

First we consider unification of identical constants. We formally prove the expected result. 

 

lemma "solve([(T([],[]),T([],[]))],[]) = Some []" 

  by code_simp 

 

We consider the same example in Isabelle using the generated code. 

 

ML_val ‹ solve([(T([],[]),T([],[]))],[]) › 

 

Output displayed in Isabelle: val it = SOME []: ((char list * inta) * term) list option 



 

We then consider unification of different constants. We again formally prove the expected result. 

 

lemma "solve([(T([zero_char_inst.zero_char],[]),T([],[]))],[]) = None" 

  by code_simp 

 

We also consider the same example in Isabelle using the generated code. 

 

ML_val ‹ solve([(T([Zero_char],[]),T([],[]))],[]) › 

 

Output displayed in Isabelle: val it = NONE: ((char list * inta) * term) list option 

 

For both examples the output is as expected. More advanced examples are of course possible. 

5 Related Work 

There are several other formalizations of unification algorithms. An early result is Paulson's 

formalization [4] in LCF of an algorithm by Manna and Waldinger [5]. This formalization was used 

as the basis of a formalization by Coen, Slind and Krauss [6] of the same in Isabelle. In this 

formalization they represent terms as binary trees. 

Urban, Pitts and Gabbay [7] also formalize unification in Isabelle, McBride [8] formalizes 

unification in LEGO, Kumar and Norrish [9] formalize unification in HOL4 and recently Avelar, 

Galdino, de Moura and Ayala-Rincón [10] formalize unification in PVS. 

Most similar to our formalization is probably the formalization in Isabelle by Sternagel and 

Thiemann [11] since they formalize the same algorithm from Baader and Nipkow's book. A 

difference is that they have merged the functions solve and elim into one and thus our formalization is 

strictly more faithful to the original code. Another difference is that they do a different termination 

proof. 

The above formalizations are of worst-case exponential running time algorithms, however, Ruiz-

Reina, Martín-Mateos, Alonso and Hidalgo [12] formalize in ACL2 a worst-case quadratic running 

time algorithm which also stems from Baader and Nipkow's book. Brandt [13] has done preliminary 

work on formalizing the same algorithm in Isabelle's Imperative HOL. Except for this preliminary 

work all mentioned formalizations prove termination and correctness. 

6 Conclusion 

We have formalized first-order syntactic unification. In contrast to other formalizations from the 

literature we follow the ML-code from Baader and Nipkow's book undeviatingly. We formalize a 

proof of termination and run the unification algorithm on a number of examples using Isabelle's code-

generation. 

It is our hope that the stand-alone formalization can be useful for teaching unification algorithms. 

We did not find any mistakes in the presentation of the unification algorithm in Baader and Nipkow's 

book. The Isabelle proof assistant allows for quite readable formal proofs of the theorems and the 400 

lines are checked in a few seconds. 

Future work includes proving correctness but our proof of termination for the rather direct 

formalization of a succinct unification algorithm should be of interest in itself. 
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Abstract

We present a nominal unification algorithm that runs in O(n × log(n) × G(n)) time,
where G is the functional inverse of Ackermann’s function. Nominal unification gener-
ates a set of variable assignments if there exists one, that makes terms involving binding
operations α-equivalent. We preserve names while using special representations of de
Bruijn numbers to enable efficient name management. We use Martelli-Montanari style
multi-equation reduction to generate these name management problems from arbitrary
unification terms.

1 Introduction and background

Equational theories over terms, such as the α, β, and η in the λ-calculus [Church, 1941], are a
critical component of programming languages and formal systems. As users of logic program-
ming languages and theorem provers, we desire such rules to be available out of the box. Two
theories provide this convenience: Miller’s higher-order pattern unification [Miller, 1989] and
Urban et al.’s nominal unification [Urban et al., 2004]. Higher-order pattern unification, the
foundation of Isabelle [Paulson, 1986], λProlog [Nadathur et al., 1988], and Twelf [Pfenning
and Schürmann, 1999], handles a fragment of the βη-rules. Nominal unification, the unification
modulo the α-rule, has inspired extensions of logic programming languages such as αProlog [Ch-
eney and Urban, 2004] and αKanren [Byrd and Friedman, 2007], as well as theorem provers
such as Nominal Isabelle [Urban and Tasson, 2005] and αLeanTAP [Near et al., 2008]. Al-
though these two theories can be reduced to one another [Cheney, 2005, Levy and Villaret,
2012], implementing higher-order pattern unification is more complicated because it has to deal
with β-reduction and capture-avoiding substitution. An implementation of nominal unification,
in which unification does not involve explicit β-reduction, is more straightforward and easier to
formalize.

Concerning time complexity, Qian [1996] has proven that higher-order pattern unification is
decidable in linear time. Still, it has been an open problem whether there exists a nominal unifi-
cation algorithm that can do better than O(n2). Levy and Villaret [2012] give a quadratic-time
reduction from nominal unification to higher-order pattern unification. Meanwhile, algorithmic
advances by Paterson and Wegman [1978] and Martelli and Montanari [1982] for unification
have inspired many improvements to the efficiency of nominal unification. Ideas like applying
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swappings lazily and composing swappings eagerly and sharing subterms have also been ex-
plored. Calvès [2010] describes quadratic algorithms that extend the Paterson-Wegman and
Martelli-Montanari’s algorithms with name (atom) handling; Levy and Villaret [2010] describe
a quadratic algorithm that reduces unification problems to a sequence of freshness and equality
constraints and then solves the constraints.

The inefficiency of these nominal unification algorithms comes from the swapping actions.
To decide the α-equivalence of two names, we need to linearly traverse a list whose length
is the number of binders. One might try to replace these lists with some structures of better
lookup efficiency, such as hashtables, but then composing two swappings would take linear time,
and that operation is also rather frequent. Here, we present an algorithm that does not use
swappings but instead represents names with de Bruijn numbers. De Bruijn numbers enable
the use of persistent hashtables, in particular, Bagwell’s Hash Array Mapped Trie (HAMT).
HAMTs provide efficient lookup and they use sharing to avoid the linear-time costs that would
normally be associated with duplicating a hashtable [Bagwell, 2001].

We organize this paper as follows. In section 2, we provide an alternative representation
of de Bruijn numbers that is suitable for unification. In section 3, we describe the abstract
machines for name management and unification. In section 4, we discuss the time complexity
of this algorithm. The proofs of our claims are in progress and are available at the authors’
Github,1 formalized in Agda.

2 De Bruijn numbers should coexist with names

Figure 1: Terms
t, l, r ::= a name

| λa.t abstraction
| (l r) combination

Figure 2: Free and bound
a /∈ Φ

Φ ` Fr a [Free]

(name→idxΦ a) = i
(idx→nameΦ i) = a

Φ ` Bd a i [Bound]

Figure 3: ≈-rules
a1 = a2
Φ1 ` Fr a1 Φ2 ` Fr a2
〈a1; Φ1〉 ≈ 〈a2; Φ2〉

[Same-Free]

i1 = i2
Φ1 ` Bd a1 i1 Φ2 ` Bd a2 i2

〈a1; Φ1〉 ≈ 〈a2; Φ2〉
[Same-Bound]

De Bruijn numbers are a technique for
representing syntax with binding struc-
ture [de Bruijn, 1972]. A de Bruijn number is
a natural number that indicates the distance
from a name’s occurrence to its correspond-
ing binder. When all names in an expres-
sion are replaced with their corresponding
de Bruijn numbers, a direct structural equal-
ity check is sufficient to decide α-equivalence.
Many programming languages use de Bruijn
numbers in their internal representations for
machine manipulation during operations such
as type checking. The idea of using names
for free variables and numbers for bound
variables, known as the locally nameless ap-
proach [Charguéraud, 2012], is employed for
formalizing programming language metathe-
ory [Aydemir et al., 2006, 2008]. Also, de
Bruijn numbers, combined with explicit sub-
stitution, have been introduced in higher-
order unification [Dowek et al., 2000] to im-
prove the efficiency of unification.

Despite the convenience when implement-
ing α-equivalence, programs written with de Bruijn numbers are notoriously difficult for humans

1https://github.com/mvcccccc/UNIF2018

2

https://github.com/mvcccccc/UNIF2018
https://github.com/mvcccccc/UNIF2018
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to read and understand. What’s worse, as pointed out by Berghofer and Urban [2007], translat-
ing pencil-and-paper style proofs to versions using de Bruijn numbers is surprisingly involved:
such a translation may alter the structure of proofs. Thus, recovering proofs with explicit names
from proofs that use de Bruijn numbers is difficult or even impossible. Thus, for the sake of
both readers and writers of proofs, it is worth providing an interface with names.

If our concern is simply deciding α-equivalence between expressions, an easy way to use
de Bruijn numbers while preserving names is to traverse the expressions, annotate each name
with its de Bruijn number, then read back the expressions without numbers. This approach,
however, does not work for unification, because it only contains the mapping from names to
numbers. In unification modulo α-equivalence, one frequently needs the mapping from numbers
to names to decide what name to assign to a unification variable.

We represent de Bruijn numbers by static closures. Such closures preserve the mappings in
both directions: names to numbers and numbers to names.

Definition 2.1. A closure is an ordered pair 〈t; Φ〉 of a term t, defined in Figure 1, and a
scope Φ, where the scope is an ordered list of names for the binders in the enclosing context.
The name of the innermost binder is written first in Φ.

When the term of a closure is a name, the closure itself represents a de Bruijn number. Con-
sider the term λ a.λ b.a. The de Bruijn number of the name a is 1 and the closure-representation
of this number is 〈a; (b a)〉. We can retrieve the number-representation by finding the position
of the first appearance of the name in the scope. In this case, the position of a in the scope
(b a) is 1, its de Bruijn number. The de Bruijn number of b would have been 0 if the closure
had been 〈b; (b a)〉

Figure 4: Unification terms and problems
X vars
a, b names
xs ::= ε list of vars

| X,xs
t, l, r ::= a

| λa.t abstractions
| (l r) combinations
| X

eν ::= 〈a; Φ〉 = 〈a; Φ〉 ν-equation
| 〈a; Φ〉 = 〈X; Φ〉

pν ::= ε ν-problems
| eν , pν

eδ ::= 〈X; Φ〉 = 〈X; Φ〉 δ-equation
pδ ::= ε δ-problems

| eδ, pδ

We define three operations on scopes: ext
extends the scope by consing a name to the
front of the scope; idx→name yields the name
of a given index counting from the leftmost in
the scope; and name→idx yields the location
of the first appearance of a given name count-
ing from the front. When repeated names ap-
pear, the first appearance in a scope shadows
the others.

Figure 2 defines the free and bound rela-
tions “constructively,” with de Bruijn num-
bers serving as evidence that variables are
well-scoped. When a name, a, does not ap-
pear in the scope, Φ, we say, “a is free with
respect to Φ,” written as Φ ` Fr a; when a’s
first appearance in Φ is the position i, we say,
“a is bound at i with respect to Φ,” written
as Φ ` Bd a i. The Bound rule needs two
premises to be algorithmic for either a name
or index input, and prevent incorrect results caused by shadowing. For example, given the
index 1 and the scope (a a), the relation, (a a) ` Bd a 1, does not hold. Figure 3 defines the
rules that decide α-equivalent of two names w.r.t. their scopes, written as 〈a; Φ〉 ≈ 〈a; Φ〉.

3
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3 Unification

In Figure 4, we introduce unification variables, abbreviated as vars. Now, let’s consider a
simplified unification problem: a variable can only be instantiated by a name, that is, finding
the unifier of two terms that share the same structure but differ in names and variables. A
unifier consists of two parts: σ and δ.

Figure 5: ν-machine

σ ` pν ⇒ν σ

σ0 ` ε⇒ν σ0
[Empty]

〈a1; Φ1〉 ≈ 〈a2; Φ2〉
σ0 ` p⇒ν σ1

σ0 ` 〈a1; Φ1〉 = 〈a2; Φ2〉, p⇒ν σ1
[N-N]

〈a1; Φ1〉 ≈ 〈a2; Φ2〉
{X2/a2} ∪ σ0 ` p⇒ν σ1

σ0 ` 〈a1; Φ1〉 = 〈X2; Φ2〉, p⇒ν σ1
[N-V]

Figure 6: δ-machine and the pull operation

σ; pδ ` xs⇒δ σ; pδ
σ;xs ` pδ ⇒pull σ;xs

σ; δ ` ε⇒δ σ; δ
[Empty-Xs]

σ; ε ` xs⇒δ σ; ε
[Empty-D]

σ0;xs0 ` δ0(X) ⇒pull σ
′
0;xs1

σ′
0; δ0 \ δ0(X) ` xs1 ⇒δ σ1; δ1
σ0; δ0 ` X,xs0 ⇒δ σ1; δ1

[Pull]

σ;xs ` ε⇒pull σ;xs
[Empty]

〈a1; Φ1〉 ≈ 〈a2; Φ2〉 [N-N]
σ0(X1) = a1 σ0(X2) = a2
σ0;xs0 ` p⇒pull σ1;xs1

σ0;xs0 ` 〈X1; Φ1〉 = 〈X2; Φ2〉, p⇒pull σ1;xs1

〈a1; Φ1〉 ≈ 〈a2; Φ2〉 [N-V]
σ0(X1) = a1 X2 /∈ dom(σ0)
{X2/a2} ∪ σ0; (X2, xs0) ` p⇒pull σ1;xs1

σ0;xs0 ` 〈X1; Φ1〉 = 〈X2; Φ2〉, p⇒pull σ1;xs1

A substitution, σ, is a partial finite func-
tion from unification variables, Xi, to terms,
ti. For readability, we write σ as a set,
{X1/t1, ..., Xj/tj} and we write {X/t} ∪ σ
for extending σ with X/t. For the simplified
problems, we restrict t to a name.

A closure equation is a pair of two
closures that are α-equivalent. ∆ stands
for a set of closure equations. We write
∆ as {(〈t1; Φ1〉 〈t′1; Φ′

1〉), ..., (〈ti; Φ1〉 〈t′i; Φ′
1〉)}

and we write {(〈t; Φ〉 〈t′; Φ′〉)}∪∆ for extend-
ing ∆ with (〈t; Φ〉 〈t′; Φ′〉). δ is a special form
of ∆: for each equation in δ, the terms on
both sides are variables. Given a variable X,
δ(X) yields the list of closure equations where
X appears at least once.

The simplified problem is about solving
three kinds of problems: unifying a closure
equation that has a name term on one side
and a var term on the other side, abbreviated
to N-V, and similarly N-N and V-V. We refer
to an N-N or N-V equation as an eν and refer
to a V-V equation as an eδ. Given two lists
of these closure equations, pν and pδ, we first
run the ν-machine, defined in Figure 5, on pν
to generate a substitution. The δ-machine,
defined in Figure 6, then computes the final
unifier on three inputs: the substitution re-
sulting from the ν-machine, δ, and a list of
known variables, initialized by the domain of
the substitution. If no transitions apply, the
machine fails and the unification problem has
no unifier.

Lemma 3.1. For all finite inputs, the ν-
machine and the δ-machine terminate; for
all finite inputs, the ν-machine and the δ-
machine succeed with the most general unifier
if and only if one exists.

Proof. By structural induction on the transi-
tions of the machines.

4
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Now the question is how to generalize the previous algorithm, that is, given two arbitrary
terms, where a variable may be instantiated by any term besides names, can we re-shape the
two terms to create a proper input to the two machines?

Here we use the idea of Martelli and Montanari [1982]: finding the shared shape of two
terms by computing the common parts and frontiers over a multi-equation. They define the
common part of two terms to be a term obtained by superimposing, and the frontier to be
the substitution that captures the differences between each term and the common part. For
example, given distinct names a, b, and c, distinct vars X and Y , and two terms (aX) and
(Y (b c)), the common part is the term (Y X), and the frontier is the substitution {Y/a, X/(b c)}.
A multi-equation, defined in Figure 7, groups together many closures to be unified, where the
variable closures are on the left-hand side, and the non-variable closures are on the right-hand
side.

The ρ-machine, defined in Figure 8, reduces an arbitrary nominal unification problem to
pν , pδ, and a substitution where the codomain is unrestricted. Each ⇒s transition computes
the common part and the frontier of a multi-equation. For readability, the sketch only shows
the rules for multi-equations with two closures. A multi-equation with more than two closures
is handled by simultaneously applying the rule to all closures. Unlike the Martelli-Montanari
algorithm, the ρ-machine finds the maximum common part instead of the minimum. Thus,
in the V-C, V-A, and V-A′ rules, we need two operators, new-name and new-var, to create
new names and new variables for the shapes that fit with combinations and abstractions. The
ordering of multi-equation is the same with Martelli-Montanari: for each multi-equation, we
count the appearances of its left-hand side variables in other multi-equations of U and select
the multi-equation associated with the smallest counter each time.

Conjecture 3.1. Given a unification problem, we run the ρ-machine, the ν-machine, and the
δ-machine in sequence. The algorithm terminates; if the algorithm fails, i.e. no transitions
apply, the problem has no solution; if the algorithm terminates, then the result of the δ-machine
is the mgu.

5
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Figure 7: Multi-equations
e ::= (〈t; Φ〉 〈t; Φ〉) multi-equation
| 〈t; Φ〉, e

U ::= ε list of multi-equations
| e, U

Figure 8: ρ-machine

pν ; pδ;σ ` U ⇒ρ pν ; pδ;σ
pν ; pδ;σ ` e⇒s pν ; pδ;σ

p0; δ0;σ0 ` ε⇒ρ p0; δ0;σ0
[Empty]

p0; δ0;σ0 ` e ⇒s p
′
0; δ′0;σ′

0
p′0; δ′0;σ′

0 ` U ⇒ρ p1; δ1;σ1

p0; δ0;σ0 ` (e, U)⇒ρ p1; δ1;σ1
[Step]

p1 = (〈a1; Φ1〉 〈a2; Φ2〉) ∪ p0
p0; δ0;σ0 ` (〈a1; Φ1〉 〈a2; Φ2〉)⇒s p1; δ0;σ0

[N-N]

p1 = (〈a1; Φ1〉 〈X2; Φ2〉) ∪ p0
p0; δ0;σ0 ` (〈a1; Φ1〉 〈X2; Φ2〉)⇒s p1; δ0;σ0

[N-V]

δ1 = (〈X1; Φ1〉 〈X2; Φ2〉) ∪ δ0
p0; δ0;σ0 ` (〈X1; Φ1〉 〈X2; Φ2〉)⇒s p0; δ1;σ0

[V-V]

p0; δ0;σ0 ` (〈l1; Φ1〉 〈l2; Φ2〉) ⇒s p
′
0; δ′0;σ′

0
p′0; δ′0;σ′

0 ` (〈r1; Φ1〉 〈r2; Φ2〉)⇒s p1; δ1;σ1

p0; δ0;σ0 ` (〈(l1 r1); Φ1〉 〈(l2 r2); Φ2〉)⇒s p1; δ1;σ1
[C-C]

Φ′
1 = (extΦ1 a1) Φ′

2 = (extΦ2 a2)
p0; δ0;σ0 ` (〈t1; Φ′

1〉 〈t2; Φ′
2〉)⇒s p1; δ1;σ1

p0; δ0;σ0 ` (〈λ a1.t1; Φ1〉 〈λ a2.t2; Φ2〉)⇒s p1; δ1;σ1
[A-A]

Xl = (new-var) Xr = (new-var)
p0; δ0; {X1/(Xl, Xr)} ∪ σ0 ` (〈Xl; Φ1〉 〈l2; Φ2〉)⇒s p

′
0; δ′0;σ′

0
p′0; δ′0;σ′

0 ` (〈Xr; Φ1〉 〈r2; Φ2〉)⇒s p1; δ1;σ1

p0; δ0;σ0 ` (〈X1; Φ1〉 〈(l2 r2); Φ2〉)⇒s p1; δ1;σ1
[V-C]

Φ′
1 = (extΦ1 a1) Φ′

2 = (extΦ2 a2) Φ1 ` Fr a1 a2 = (new-name) Xt = (new-var)
p0; δ0; {X1/λ a1.Xt} ∪ σ′

0 ` (〈Xt; Φ′
1〉 〈t2; Φ′

2〉)⇒s p1; δ1;σ1

p0; δ0;σ0 ` (〈X1; Φ1〉 〈λ a2.t2; Φ2〉)⇒s p1; δ1;σ1
[V-A]

Φ′
1 = (extΦ1 a1) Φ′

2 = (extΦ2 a2) Φ1 ` Bd a1 i Φ2 ` Bd a2 i Xt = (new-var)
p0; δ0; {X1/λ a1.Xt} ∪ σ′

0 ` (〈Xt; Φ′
1〉 〈t2; Φ′

2〉)⇒s p1; δ1;σ1

p0; δ0;σ0 ` (〈X1; Φ1〉 〈λ a2.t2; Φ2〉)⇒s p1; δ1;σ1
[V-A′]
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4 A note on time complexity

In the previous sections, we represent scopes by lists for simplicity, but lists are inefficient for
variable lookup. To have better time complexity, we represent a scope with a counter and
two persistent hashtables. One hashtable maps from names to numbers, the other maps from
numbers to names, and the counter is used to track the de Bruijn number. When we extend
a scope with a name, we extend the two hashtables with the corresponding maps and add one
to the counter. A persistent hashtable, in practice, has constant time for update and lookup,
although the worst case scenario could be O(log(n)). Thus, ext, idx→name, and name→idx

are all logarithmic time. In addition, using persistent structures avoids copying the entire
data-structure when branching, in particular, during the C-C rule of the ρ-machine. Also, we
implement δ with a hashtable that maps from a variable to the list that contains its closure
equations, i.e., the equation 〈X1; Φ1〉 ≈ 〈X2; Φ2〉 exists in both X1’s entry and Y2’s entry in the
hashtable.

Now the ν-machine and the δ-machine are both worst case O(n × log(n)), where n is the
sum of name and variable occurrences. The algorithm of Martelli-Montanari is O(n × G(n)),
when representing sets with UNION-FIND [Tarjan, 1975], where n is the number of variable
occurrences in the original terms. The ρ-machine is similar except that two new factors are
involved: the update operation of HAMT and the generation of names and variables. We
consider the former one to have O(log(n)) complexity, and we implement name and variable
creation with state monads [Moggi, 1991] to have constant time. Thus reducing an arbitrary
unification problem to the input of the ν and δ machines becomes O(n× log(n)×G(n)).
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